首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Summary In the locust,Locusta migratoria, the pairs of connectives between the three thoracic ganglia and in the neck were transected in all possible combinations. Each of these preparations was tested for the production of rhythmic flight motor activity, with sensory input from the wing receptors intact and after deafferentation. The motor activity elicited in these preparations was characterized by intracellular recordings from motoneurons and electromyographic analyses.The motor patterns observed in locusts with either the neck or the pro-mesothoracic connectives severed (Figs. 2, 3, and 4) were very similar to the flight motor pattern produced by animals with intact connectives. The activity recorded in mesothoracic flight motoneurons of locusts with either only the meso-metathoracic connectives cut or both the meso-metathoracic and the neck connectives transected were similar to each other. Rhythmic motor activity could be observed in these preparations only as long as sensory feedback from the wing receptors was intact. These patterns were significantly different from the intact motor pattern (Figs. 5, 6, and 7). Similar results were obtained when the mesothoracic ganglion was isolated from the other two thoracic ganglia, although the oscillations produced under these conditions were weak (Fig. 8 upper). In the isolated metathorax no rhythmic flight motor activity could be recorded (Fig. 8 lower), even when wing afferents were intact.Considering the differences between the motor patterns observed in the various preparations these results suggest that the ganglia of the locust ventral nerve cord do not contain segmental, homologous flight oscillators which are coupled to produce the intact flight rhythm. Instead they support the idea that the functional flight oscillator network is distributed throughout the thoracic ganglia (Robertson and Pearson 1984). The results also provide further evidence that sensory feedback from the wing sense organs is necessary for establishing the correct motor pattern in the intact animal (Wendler 1974, 1983; Pearson 1985; Wolf and Pearson 1987 a).Abbreviations CPG central pattern generator - EMG electromyogram  相似文献   

2.
Summary The development of the flight motor pattern was studied by recording from the thoracic muscles of locusts of various developmental stages. In response to a short wind stimulus, larval locusts generate unpatterned motor activity, whereas newly moulted adults generate the flight pattern (Fig. 1A). The latter is equivalent to the mature adult flight pattern, although more irregular and of lower frequency. Experiments with highly deafferentated locusts indicate that the switch from the larval tonic to adult phasic flight pattern and subsequent increase in frequency are not dependent on phasic peripheral feedback from moving body structures (Fig. 1B). By using octopamine, flight motor activity could be released without need of the wind stimulus (Fig. 2). This corresponded to the normal wind released flight pattern of intact locusts, although the frequency was lower (Fig. 8). Following octopamine treatment, the response to wind stimulation was enhanced. Wind then released in deafferentated adults long flight sequences of significantly elevated frequency (Fig. 3). Although flight is essentially an adult specific behaviour, octopamine was finally found to release flight motor activity in all larval stages (Fig. 7).We conclude that major steps in the development of the flight motor circuitry are completed by the end of embryogenesis. Thus, in contrast to previous assumptions (cf. Bentley and Hoy 1970; Kutsch 1974a; Altman 1975), postembryonic changes in neither the central, nor peripheral nervous system appear to be of major importance for the ontogeny of the locust flight motor program. Whether developmental changes in the wind sensory system of the head, or levels of neurohormones such as octopamine, are related to the newly acquired responsiveness of freshly moulted adult locusts to the normal flight releasing stimulus is discussed.  相似文献   

3.
Summary The activity of flight interneurons was recorded intracellularly in intact, tethered flying locusts (Locusta migratoria) and after removal of sensory input from the wing receptors. Depolarization patterns and spike discharges were characterized and compared for the two situations.In general, depressor interneurons (n=6) showed only minor changes in their activity as a result of deafferentation (Fig. 1). Exceptions were interneurons 308 and 506 (Fig. 2). By contrast, all but one of the elevator interneurons (n=9) produced distinctly different depolarization patterns in intact locusts and following deafferentation. Three different groups of elevator interneurons were found (excluding the one exceptional neuron, Fig. 6). (i) One group of interneurons (n=4) produced different, superthreshold depolarizations in intact and deafferented animals (Fig. 3). Characteristic, biphasic depolarizations were recorded from these fibres at lower wingbeat frequencies in the intact situation but only single, delayed potentials were recorded after deafferentation. (ii) The second group of interneurons (n=3) exhibited distinct rhythmic activity only in intact animals. After deafferentation their depolarizations were small and often below the threshold for spike initiation (Fig. 4). (iii) One interneuron produced rhythmic flight motor oscillations only after deafferentation. In intact locusts the membrane potential of this neuron showed very small oscillations and remained subthreshold (Fig. 5).Four main conclusions emerge from these data. (i) The activity of elevator interneurons is under greater sensory control than that of the depressors. This confirms the results of our previous electromyographic and motoneuronal analyses, (ii) A considerable portion of elevator activity is generated as a result of phasic sensory feedback. An essential input is from the hindwing tegulae (Table 1; Pearson and Wolf 1988). (iii) The activity of depressor interneurons appears to be determined by central mechanisms to a major extent. (iv) Different sets of central neurons appear to be involved in flight pattern generation in intact and deafferented locusts —although the two sets share many common elements.Abbreviations EMG electromyogram - PSP postsynaptic potential (EPSP excitatory andIPSP inhibitory)  相似文献   

4.
Summary The flight behavior of locusts with hemisected mesothoracic or metathoracic ganglia was observed in unrestrained animals and monitored electromyographically in tethered animals. Animals with hemisected mesothoracic ganglia were able to initiate and carry out free flight. Hemisection of the mesothoracic ganglion caused no significant changes in the pattern of flight muscle firing; both intra- and intersegmental coordination of flight muscle activity were retained (Figs. 3, 4). Additional transection of one meso-metathoracic connective altered the pattern of flight muscle firing but did not abolish rhythmic activity (Fig. 8). Deafferentation of the thoracic ganglia in animals with hemisected mesothoracic ganglia resulted in rhythmically coordinated motor activity (Fig. 5) which was indistinguishable from that shown by deafferented animals with all ganglia intact. Hemisection of the metathoracic ganglion resulted in an abnormal pattern of flight muscle firing. However, a basic rhythmicity of motor activity was still present (Fig. 6). The implications of these results for rhythm generation and motor coordination in the flight control system of the locust are discussed.  相似文献   

5.
The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.  相似文献   

6.
The natural insect neuromodulator octopamine (OCT) was released iontophoretically into regions of neuropil in locust metathoracic ganglia. A narrowly-defined site was found on one side of the ganglion at which release caused a prolonged bout of repetitive flex-extend-flex movements of the tibia on the injected side, at a frequency of from 2-3.5 Hz. When a bout had terminated, repetition of the OCT release caused an extremely similar bout to occur, and again with further treatments, indefinitely. OCT iontophoresis at the equivalent site on the contralateral side caused the contralateral flexor to make stepping movements. Two sites were found, in each half of the ganglion, at which similar OCT release evoked a bout of flight motor activity at 10 Hz. The flight bout involved both sides synchronously and nearly equally, except for a slightly greater motor output on the injected side. Evoked bouts lasted from 20 sec to 25 min depending on the preparation and amount of OCT released. At a site in the 6th abdominal ganglion of mature female locusts OCT release suppressed ongoing rhythmic oviposition digging evoked by severing the ventral nerve cord. A number of previously undescribed DUM neurons was encountered and their dendritic patterns, which are distinctive, determined following dye injection. A hypothesis, termed the Orchestration Hypothesis is presented, which considers how modulator neurons such as locust octopaminergic neurons, might be involved in the generation of specific behaviors.  相似文献   

7.
A central pattern generator underlies crawling in the medicinal leech   总被引:1,自引:0,他引:1  
Crawling in the medicinal leech has previously been thought to require sensory feedback because the intact behavior is strongly modulated by sensory feedback and because semi-intact preparations will only crawl if they can move freely. Here we show that an isolated leech nerve cord can produce a crawling motor pattern similar to the one seen in semi-intact preparations, which consists of an anterior-to-posterior wave of alternating excitatory circular and longitudinal motor neuron bursts in each segment. The isolated cord also reproduces the patterns of activity seen in semi-intact preparations for several other kinds of cells: the dorsal inhibitor cell 1, the ventral excitor cell 4, and the annulus erector motor neuron. Because this correspondence is so strong, there must be a central pattern generator in the isolated cord that can produce the basic motor pattern for crawling without sensory feedback. A quantitative analysis of the isolated motor pattern, however, reveals that isolated and semi-intact preparations have longer periods than the intact behavior and that there are deficiencies in the timing of motor neuron bursts in the isolated pattern. These results suggest that sensory feedback modulates the isolated central pattern generator to help produce the normal motor pattern.  相似文献   

8.
Ventilatory rhythms of locusts are generated in the central nervous system (CNS). The primary oscillator or central pattern generator (CPG) is located in the metathoracic ganglion. We studied the different patterns of ventilation by recording long-term efferent discharges from the isolated metathoracic ganglion.Two different basic patterns occur: continuous ventilation and discontinuous ventilation. These patterns can be found in the isolated nerve cord as well as in intact animals. In intact animals sensory feedback usually elicits high frequency continuous ventilation as is the case in most physiological experiments. Many studies of ventilation-associated interneurones were performed under what we call stressed conditions i.e. with strong sensory feedback. Under these conditions many interneurones may be recruited which probably do not belong to the basic CPG. In isolated nerve cords of locusts we recognised the two basic types of ventilation. This provides an experimental approach to the origin of rhythmogenesis in ventilation. We can now examine single interneurones under less stressed or even discontinuous ventilatory conditions in the isolated CNS.We suggest the dominance of intrinsic rhythmogenesis of ventilation in the metathoracic ganglion of locusts.  相似文献   

9.
Effects of biogenic amines on a centrally generated motor pattern in Manduca sexta were examined by pressure injecting nanomole to micromole amounts of octopamine, dopamine or serotonin into thoracic ganglia. Motor output was recorded extracellularly from a pair of antagonistic flight muscles and their motor neurons. The monoamines were found to alter production of a motor pattern that produces rhythmic wing flapping (10 Hz) and exhibits phase relationships similar to those in the flight pattern of intact moths. In mesothoracic ganglia with sensory nerves intact, octopamine (4 X 10(-9) mol) injected into lateral regions evoked regular firing of a single motor neuron, whereas a higher dose (4 X 10(-8) mol) often elicited the flight motor pattern. In the absence of sensory input, these doses of octopamine had little effect. Low doses (10(-10) mol) greatly enhanced motor responses to electrical stimulation of a wing sensory nerve. Dopamine (2 X 10(-10) mol) injected into the medial region of the mesothoracic ganglion elicited the flight motor pattern in the presence or absence of sensory input. Rhythmic output induced by dopamine (5 X 10(-10) mol) was suppressed by injecting serotonin (5 X 10(-10) mol) into the same region. These findings demonstrate that dopamine, octopamine, and serotonin have different effects on motor output in Manduca and suggest that these amines are involved in initiating, maintaining and terminating flight behavior, respectively. Octopamine may elicit flight production by enhancing the efficacy of sensory transmission thereby increasing excitability or arousal. Dopamine may act on interneurons involved in generating the flight motor pattern.  相似文献   

10.
We have tested the effect of a known insect neuromodulator, octopamine, on flight initiation in the cockroach. Using minimally dissected animals, we found that octopamine lowered the threshold for windevoked initiation of flight when applied to either of two major synaptic sites in the flight circuitry: 1) the last abdominal ganglion, where wind-sensitive neurons from the cerci excite dorsal giant interneurons, or 2) the metathoracic ganglion, where the dorsal giant interneurons activate interneurons and motoneurons which are involved in producing the rhythmic flight motor pattern in the flight muscles (Fig. 2).Correlated with this change in flight initiation threshold, we found that octopamine applied to the last abdominal ganglion increased the number of action potentials produced by individual dorsal giant interneurons when recruiting the cereal wind-sensitive neurons with wind puffs (Figs. 3, 4, 5) or with extracellular stimulation of their axons (Fig. 6). Octopamine increases the excitability of the giant interneurons (Figs. 7, 8). Also, when we stimulated individual dorsal giant interneurons intracellularly, the number of action potentials needed to initiate flight was reduced when octopamine was applied to the metathoracic ganglion (Fig. 9).Abbreviations EMG electromyogram - dGIs dorsal giant interneurons - GI giant interneuron - A6 sixth abdominal ganglion - T3 third thoracic ganglion - EPSP excitatory postsynaptic potential  相似文献   

11.
The flights of free and tethered Locusta migratoria were followed from initiation with a high-speed film camera. A longer sequence of wing-beat cycles can thus be correlated unequivocally with the animals's movement in time and space. In both flight situations the locusts start with approximately the same instantaneous wing-beat frequency. During the early flight phase free-flying animals increase their wing-beat frequency, whereas for tethered locusts this parameter remains constant or even decreases. The general flight pattern is similar in juvenile and mature locusts; the juveniles however, fly with alower wing-beat frequency and flight speed. The differences in the wing-beat frequencies for both flight performances are discussed with respect to differences in the sensory inputs to the flight motor centre.  相似文献   

12.
 This report investigates the reflex activation of locust flight motoneurones following their spiking activity. As shown elsewhere, an electrical stimulus applied to a flight muscle produces multiple waves of delayed excitation in wing elevator and depressor motoneurones. Nerve ablation experiments show that this response is initiated by the mechanical movement of the stimulated muscle, and not the antidromic spike evoked in the motoneurone. The delayed excitation still occurs in the absence of inputs from the wing receptor systems, and also when all other sources of afferent feedback are abolished, excepting thoracic nerve 2. Following complete deafferentation, spikes in flight motoneurones had no influence on other flight motoneurones. Numerous afferents in the purely sensory nerve 2 are excited by flight muscle contractions. The responses are consistent for repeated contractions of the same muscle, but differ when other muscles are stimulated. During tethered flight, changes in the activation of single flight muscles are reflected in changes of the nerve 2 discharge pattern. Electrical stimulation of this nerve causes delayed excitation of flight motoneurones, and can initiate flight activity. It is suggested that internal proprioceptors, such as those associated with nerve 2, will contribute to shaping the final motor output for flight behaviour. Accepted: 24 April 1996  相似文献   

13.
In a wind stream, larval stages of Locusta usually show a tonic muscle activity but they can also exhibit a rhythmic motor output. With ageing such a pattern can be released sooner, the trains become longer. The basic rhythm of 10 Hz does not change. The initial co-contraction of specific muscles is substituted later in development by an antagonistic recruitment. This activity resembles the flight motor pattern of young locusts which lack phasic sensory feedback from the wing region. Azadirachtin, an insect growth regulator, has been used to produce a permanent 5th larval instar. However, the extension of the last larval stage does not lead to a further development of the motor pattern to a level comparable to mature animals.  相似文献   

14.
1. In a tethered cockroach (Periplaneta americana) whose wings have been cut back to stumps, it is possible to elicit brief sequences of flight-like activity by puffing wind on the animal's body. 2. During such brief sequences, rhythmic bursts of action potentials coming from the thorax at the wingbeat frequency, descend the abdominal nerve cord to the last abdominal ganglion (A6). This descending rhythm is often accompanied by an ascending rhythm (Fig. 2). 3. Intracellular recording during flight-like activity from identified ascending giant interneurons, and from some unidentified descending axons in the abdominal nerve cord, shows that: (a) ventral giant interneurons (vGIs) remain silent (Fig. 3); (b) dorsal giant interneurons (dGIs) are activated at the onset of the flight-like activity and remain active sporadically throughout the flight sequence (Fig.4); (c) some descending axons in the abdominal nerve cord show rhythmic activity phase-locked to the flight rhythm (Fig. 5). 4. Also during such brief sequences, the cercal nerves, running from the cerci (paired, posterior, wind sensitive appendages) to the last abdominal ganglion, show rhythmic activity at the wingbeat frequency (Fig. 6). This includes activity of some motor axons controlling vibratory cercal movements and of some sensory axons. 5. More prolonged flight sequences were elicited in cockroaches whose wings were not cut and which flew in front of a wind tunnel (Fig. 1B). 6. In these more prolonged flight sequences, the number of ascending spikes per burst was greater than that seen in the wingless preparation (Fig. 8; compare to Fig. 2). Recordings from both ventral and dorsal GIs show that: in spite of the ongoing wind from both the tunnel and the beating wings, which is far above threshold for the vGIs in a resting cockroach, the vGIs are entirely silent during flight. Moreover, the vGIs response to strong wind puffs that normally evoke maximal GI responses is reduced by a mean of 86% during flight (Fig. 9). The dGIs are active in a strong rhythm (Figs. 11 and 12). 7. Three sources appear to contribute to the ascending dGI rhythm (1) the axons carrying the rhythmic descending bursts; (2) the rhythmic sensory activity resulting from the cercal vibration; and (3) the sensory activity resulting from rhythmic wind gusts produced by the wingbeat and detected by the cerci. The contribution of each source has been tested alone while removing the other two (Figs. 13 and 14). Such experiments suggest that all 3 feedback loops are involved in rhythmically exciting the dGIs (Fig. 15).  相似文献   

15.
Control of leech swimming activity by the cephalic ganglia   总被引:2,自引:0,他引:2  
We investigated the role played by the cephalic nervous system in the control of swimming activity in the leech, Hirudo medicinalis, by comparing swimming activity in isolated leech nerve cords that included the head ganglia (supra- and subesophageal ganglia) with swimming activity in nerve cords from which these ganglia were removed. We found that the presence of these cephalic ganglia had an inhibitory influence on the reliability with which stimulation of peripheral (DP) nerves and intracellular stimulation of swim-initiating neurons initiated and maintained swimming activity. In addition, swimming activity recorded from both oscillator and motor neurons in preparations that included head ganglia frequently exhibited irregular bursting patterns consisting of missed, weak, or sustained bursts. Removal of the two head ganglia as well as the first segmental ganglion eliminated this irregular activity pattern. We also identified a pair of rhythmically active interneurons, SRN1, in the subesophageal ganglion that, when depolarized, could reset the swimming rhythm. Thus the cephalic ganglia and first segmental ganglion of the leech nerve cord are capable of exerting a tonic inhibitory influence as well as a modulatory effect on swimming activity in the segmental nerve cord.  相似文献   

16.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density‐dependent differences in flight‐related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind‐induced flight initiation. Wind‐induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight‐related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase‐dependent differences in the activity of flight‐related interneurons reflect behavioral phase characteristics. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 152–162, 2003  相似文献   

17.
Summary The insect order Phasmida comprises species with a broad spectrum of wing morphism and flight ability. By monitoring the electrical activity of several pterothoracic muscles the motor output during tethered flight was recorded for several Phasmida, ranging from excellent fliers to non-winged species. Both winged and non-winged species can generate a motor pattern as judged by criteria used to identify the locust flight pattern. However, in non-fliers the probability of expressing this pattern, its duration and precision are reduced. The antagonistic activity of the chosen muscle pairs is clearly different from the motor output during leg movements, which argues for specific motoneuronal coordination released for different behavioural performances. The demonstration of flight motor output in all tested Phasmida indicates that neural structures including their functional connectivity can be maintained independently of the appropriate peripheral structures. With respect to evolution this supports the idea that central neuronal interactions can be more conservative compared to changes in the periphery. Abbreviations of species names and indication of sexes are given in the first paragraph of Results  相似文献   

18.
1. Phentolamine was injected into the haemolymph of locusts, Locusta migratoria, and its effects on the flight system were analyzed using electrophysiological techniques. 2.Doses of 150 microliters at 10(-2) M phentolamine inactivated the wing stretch-receptors and tegulae without influencing the central nervous system (CNS). The lack of effect on the CNS was demonstrated by the absence of any effect on the flight motor pattern in animals that had been mechanically deafferented prior to the administration of phentolamine. From these observations we conclude that phentolamine can be used to chemically deafferent the flight system of the locust. Consistent with this conclusion is that the administration of phentolamine in intact animals changed the flight motor pattern so that it resembled the pattern occurring in mechanically deafferented animals. 3. The two main advantages of deafferenting the flight system by injecting phentolamine were a) intracellular recordings from central neurons could be easily maintained during the process of deafferentation, and b) the contribution of different groups of proprioceptors to the generation of the motor pattern could be assessed since not all proprioceptors were inactivated simultaneously. 4. By intracellularly recording from elevator motoneurons and administering phentolamine we confirmed a number of previous results related to the function of the wing stretch-receptors and the tegulae.  相似文献   

19.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density-dependent differences in flight-related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind-induced flight initiation. Wind-induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight-related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase-dependent differences in the activity of flight-related interneurons reflect behavioral phase characteristics.  相似文献   

20.
ABSTRACT. Rhythmic respiratory nerve activity was recorded in the dragonfly larvae, Anax parthenope Julius Brauer (Anisoptera). Alternating expiratory and inspiratory bursts of spikes occurred in abdominal nerve cords isolated from all peripheral connections. These bursts are similar to the activity recorded in semi-intact preparations, suggesting that the respiratory rhythm can be generated without peripheral sensory feedback. Expiratory bursts started and ended at the same time in different segments of semi-intact preparations. When connectives were severed, the nerve cord separated from the last abdominal ganglion did not normally show rhythmic bursts; the last ganglion alone and the nerve cord connected to the last ganglion exhibited the rhythmic bursts. However, in a few cases the nerve cord separated from the last ganglion exhibited the rhythm. The results suggest that the last ganglion contains the main oscillator, but that other weak oscillators occur elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号