首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
我们观测了不同光照预处理对拟南芥、小麦和大豆叶片光合作用和低温( 77K) 叶绿素荧光参数F685、F735 和F685􊄯F735 的影响。野生型拟南芥叶片光合作用对饱和光到有限光转变的响应曲线是V 型,而缺乏叶绿体蛋白激酶的突变体STN7 的这一曲线为L 型。饱和白光可以引起拟南芥叶片F685􊄯F735 的明显降低, 但是F735 没有明显增高, 而弱红光可以导致拟南芥叶片F685􊄯F735 的明显降低和F735 的明显增高, 表明弱红光可以引起状态1 向状态2 的转变, 同时伴随从光系统II 脱离的LHC II 与光系统I 的结合, 而饱和白光只能引起LHC II 从光系统II 反应中心复合体脱离。并且, 低温叶绿素荧光分析结果证明, 饱和白光可以引起大豆叶片LHC II 脱离, 但是不能引起小麦叶片LHC II 脱离, 而弱红光可以引起小麦叶片的这种状态转换, 却不能引起大豆叶片的这种状态转换。因此, 饱和白光引起的野生型拟南芥和大豆叶片的LHC II 脱离不是一个典型的状态转换现象。  相似文献   

2.
我们观测了不同光照预处理对拟南芥、小麦和大豆叶片光合作用和低温(77K)叶绿素荧光参数F685、F735和F685/F735的影响。野生型拟南芥叶片光合作用对饱和光到有限光转变的响应曲线是V型,而缺乏叶绿体蛋白激酶的突变体STN7的这一曲线为L型。饱和白光可以引起拟南芥叶片F685/F735的明显降低,但是F735没有明显增高,而弱红光可以导致拟南芥叶片F685/F735的明显降低和F735的明显增高,表明弱红光可以引起状态1向状态2的转变,同时伴随从光系统Ⅱ脱离的LHCⅡ与光系统Ⅰ的结合,而饱和白光只能引起LHCⅡ从光系统Ⅱ反应中心复合体脱离。并且,低温叶绿素荧光分析结果证明,饱和白光可以引起大豆叶片LHCⅡ脱离,但是不能引起小麦叶片LHCⅡ脱离,而弱红光可以引起小麦叶片的这种状态转换,却不能引起大豆叶片的这种状态转换。因此,饱和白光引起的野生型拟南芥和大豆叶片的LHCⅡ脱离不是一个典型的状态转换现象。  相似文献   

3.
珊瑚树阳生和阴生叶片光合特性和状态转换的比较   总被引:9,自引:0,他引:9  
珊瑚树阳生和阴生叶片是在不同光照环境中长期生长的,它们的光合特性有一些明显的差异.与阳生叶片相比,阴生叶片单位干重的叶绿素含量较多,类囊体膜垛叠程度较高(即每个基粒的类囊体膜垛叠层数较多,基粒类囊体的直径较大),而叶绿素a/b比值、光合作用的饱和光强和最大净光合速率等较低.用弱红光诱导阳生和阴生叶片向状态2转换时,叶绿素荧光Fm/Fo和F685/F735先迅速下降再逐渐回升,这表明两种叶片都先后通过满溢和LHCⅡ转移调节激发能在PSⅡ和PSⅠ之间的分配,改善光能利用,但阳生叶片Fm/Fo和F685/F735下降的幅度较大.  相似文献   

4.
叶片照远红光后,其叶绿素荧先参数Fm/Fo和两个光系统低温荧光产量比值F685/F735升高,照红先后,其Fm/Fo和F685/F735降低;在照远红光或红先过程中,与F685/F735的变化相比,Fm/Fo的变化幅度在较短的时间内达到最大;NaF预处理的叶片经远红光照射时,其Fm/Fo和F685/F735不增加;DCMU预处理的叶片经红光照射时,其Fm/Fo和F685/F735降低的幅度比对照小。这些结果表明,小麦叶片状态转换过程中两个先系统间能量分配的变化至少部分地与激发能满溢变化有关。这种满溢的变化与捕光色素蛋白复合体LHCⅡ的磷酸化相联,并且,与光吸收截面变化相比,满溢的变化是对两个光系统不平衡光吸收的较快响应。  相似文献   

5.
光质对绿豆幼苗叶片超微弱发光及叶绿素含量的影响   总被引:3,自引:1,他引:2  
以绿豆幼苗为试材,测定其叶片超弱发光(UBE)及叶绿素含量在不同光质条件下的变化,并探讨两者之间的关系.结果表明,生长在不同光质下绿豆幼苗叶片的UBE及延迟发光衰减参数1/P都随着其生长不断增强,且生长在白光下绿豆幼苗的UBE是生长在其他光质(红、黄、蓝、绿)下幼苗的2倍以上,而红光、黄光和绿光处理之间无显著差异;生长在白光下的绿豆幼苗叶片叶绿素含量显著高于红、黄、蓝、绿光处理幼苗,而红光和黄光处理又显著高于蓝光和绿光处理.研究发现,光质对绿豆幼苗叶片超弱发光和叶绿素含量影响相似,绿豆幼苗叶片超弱发光可能与叶绿体的发育和光合作用有关.  相似文献   

6.
本文以一种C4植物——黍子(Panicum miliaceum)为材料,在白光、红光、蓝光、远红光和黑暗5种不同条件下培养黍子幼苗,叶片采收后用于叶绿素积累、叶绿体吸收光谱、叶绿体低温荧光发射光谱和高分子量cpRNA积累的测定以及psbA基因的Northern Blot分析。结果表明:白光、红光和蓝光下生长的黍子,它们的叶绿体都有功能完善的光合系统;而远红光下生长的黍子,已有光系统Ⅱ的发射峰,只是强度和波长都与白光、红光和蓝光下的有所不同;不同光质促进叶绿素积累和高分子量cpRNA积累的效率是平行的,其中红光较蓝光和远红光有效,而复合光(白光)的作用效果最好。当以白光诱导的积累量为100%时,可以分别求出不同光质诱导叶绿素积累和高分子量cpRNA积累的相对量,结果表明,高分子量cpRNA的积累对光的依赖性要比叶绿素积累对光的依赖性大得多。psbA基因的Northern Blot分析表明,不同光质下psbA转录物的积累与高分子量cpRNA的积累是一致的。据此我们推测,在黍子叶绿体的光诱导发育过程中,psbA的转录过程可能不受光信号的直接调控,而是受叶绿体整体发育状态的控制。  相似文献   

7.
拟南芥连体和离体叶片光合作用的光响应   总被引:7,自引:0,他引:7  
测定出 2 5 0 μmol·m-2 ·s-1光强下培养的整株拟南芥连体叶片的光合作用在光强为 80 0 μmol·m-2 ·s-1左右达到光饱和 ,其离体叶片光合作用对光强响应的结果与此类似。自然条件下生长的珊瑚树连体与离体叶片光合作用均在光强约为 10 0 0 μmol·m-2 ·s-1下达到饱和 ,这验证所测得的拟南芥连体和离体叶片光合作用光响应的结果是正确的  相似文献   

8.
不同光质对桑树幼苗生长和光合特性的影响   总被引:2,自引:0,他引:2  
胡举伟  代欣  宋涛  孙广玉 《植物研究》2019,39(4):481-489
光质可影响植物光合特性、形态以及生理过程。本试验研究了不同光质(白光W、红光R、红蓝混合光RB、蓝光B)对桑树植株生长、形态和光合作用的影响。结果表明:与白光对照相比,红光、蓝光和红蓝混合光处理下植株的生长、干物质积累受到抑制;红光处理下植株的株高、叶面积显著高于白光、红蓝混合光、蓝光处理;而白光、红蓝混合光、蓝光处理下植株的LMA、叶绿素a/b比值、可溶性蛋白含量、蔗糖、淀粉含量和叶片总N含量显著高于红光处理;红蓝混合光处理下植株的Pn、Gs、ΦPSⅡ与白光处理相近,红光、蓝光处理下植株的Pn、ΦPSⅡ低于白光、红蓝混合光处理,同时红光、红蓝混合光、蓝光处理下植株的抗氧化酶活性高于白光处理,而MDA含量低于白光处理;红光处理下植株的叶片厚度、栅栏组织和海绵组织厚度显著小于白光处理。因此,一定比例的红蓝混合光可以使桑树植株的生长、光合特性、生理特征和叶片解剖结构与白光下生长植株相近,并减少单质红光、单质蓝光对植株生长发育的不利影响。  相似文献   

9.
光质对水稻幼苗超弱发光和谷氨酰胺合成酶活性的影响   总被引:2,自引:0,他引:2  
生长在不同光质下的水稻幼苗叶片的超弱发光(UBE)随着其生长进程不断增强,光质对UBE有显著影响,生长在白光下的水稻幼苗的UBE明显高于生长在红光或蓝光下的水稻幼苗的UBE,而红光和蓝光处理之间无显著差异.同时谷氨酰胺合成酶(GS)活性变化也是白光处理的水稻幼苗GS活性明显高于红光和蓝光处理,而后两者之间也无显著差异.表明光质对水稻幼苗UBE和GS活性的影响是相似的,可能与叶绿体的发育和光合作用有关.讨论了超弱发光的生物学应用前景.  相似文献   

10.
不同叶龄黄瓜叶片叶绿素蛋白质复合物组分的比较研究   总被引:1,自引:0,他引:1  
用SDS — 聚丙烯酰胺凝胶电泳的方法,对比分析了老、嫩黄瓜叶片叶绿素蛋白质复合物之间的差异,发现嫩黄瓜叶片中缺少1条属光系统I的CPIb带。从低温荧光发射光谱观察到,嫩黄瓜的光系统I相对高于光系统Ⅱ,而老黄瓜则相反。指出在叶绿体发育过程中首先形成光系统I,以后是光系统Ⅱ。我们还注意到,叶片中的F685/F735比值与叶绿素蛋白质复合物中的单体/寡聚体比值之间呈正相关关系。  相似文献   

11.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

12.
Chen Y  Xu DQ 《The New phytologist》2006,169(4):789-798
Plants often regulate the amount and size of light-harvesting antenna (LHCII) to maximize photosynthesis at low light and avoid photodamage at high light. Gas exchange, 77 K chlorophyll fluorescence, photosystem II (PSII) electron transport as well as LHCII protein were measured in leaves irradiated at different light intensities. After irradiance transition from saturating to limiting one leaf photosynthetic rate in some species such as soybean and rice declined first to a low level, then increased slowly to a stable value (V pattern), while in other species such as wheat and pumpkin it dropped immediately to a stable value (L pattern). Saturating pre-irradiation led to significant declines of both 77 K fluorescence parameter F685/F735 and light-limited PSII electron transport rate in soybean but not in wheat leaves, indicating that some LHCIIs dissociate from PSII in soybean but not in wheat leaves. The L pattern of LHCII-decreased rice mutant and the V pattern of its wild type demonstrate that the V pattern is linked to dissociation/reassociation of some LHCIIs from/to PSII.  相似文献   

13.
Zhang  Hai-Bo  Xu  Da-Quan 《Photosynthetica》2003,41(2):177-184
After saturating irradiation for 3 h (SI), the original fluorescence F0 increased while the photosystem 2 (PS2) photochemical efficiency (Fv/Fm) declined significantly. These parameters could largely recover to the levels of dark-adapted leaves after 3 h of subsequent dark recovery. No net loss of the D1 proteins occurred after SI. Soybean and pumpkin leaves had different responses to SI. Low temperature fluorescence parameters, F685 and F685/F735, decreased significantly in soybean leaves but not in pumpkin leaves. Part of the light-harvesting complex LHC2 dissociated from PS2 complexes in soybean leaves but not in pumpkin leaves, as shown by sucrose density gradient centrifugation and SDS-PAGE. The photon-saturated PS2 electron transport activity declined significantly in pumpkin thylakoids but not in soybean thylakoids. In addition, a large amount of phosphorylated D1 proteins was found in dark-adapted soybean leaves but not in dark-adapted pumpkin leaves. Hence at excessive irradiance soybean and pumpkin have the same protective strategy against photo-damage, reversible down-regulation of PS2, but two different mechanisms, namely the reversible down-regulation is related to the dissociation of LHC2 in soybean leaves but not in pumpkin leaves. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSⅡ) (Fv/Fm, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in Fv/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm ) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover,trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHCⅡ) from PSⅡ reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

15.
Weak red light-induced changes in chlorophyll fluorescence parameters and in the distribution of PS I and PS II in thylakoid membranes were measured in wheat leaves to investigate effective ways to alter the excitation energy distribution between the two photosystems during state transition in vivo. Both the chlorophyll fluorescence parameter Fm/Fo and F685/F735, the ratio of fluorescence yields of the two photosystems at low temperature (77 K), decreased when wheat leaves were illuminated by weak red light of 640 nm, however, Fm/Fo decreased to its minimum in a shorter time than F685/F735. When Photosystem (PS II) thylakoid (BBY) membranes from adequately dark-adapted leaves (control) and from red light-illuminated leaves were subjected to SDS-polyacrylamide gel electrophoresis under mildly denaturing conditions, PS I was almost absent in the control, but was present in the membranes from the leaves preilluminated with the weak red light. In consonance with this result, the content of Cu, measured by means of the energy dispersive X-ray microanalysis (EDX), increased in the central region, but decreased in the margin of the grana stacks from the leaves preilluminated by the red light as compared with the control. It is therefore suggested that: (i) both spillover and absorption cross-section changes are effective ways to alter the excitation energy distribution between the two photosystems during state transitions in vivo, and the change in spillover has a quicker response to the unbalanced light absorption of the two photosystems than the change in light absorption cross-section, and (ii) the migration of PS I towards the central region of grana stack during the transition to state 2 leads to the enhancement of excitation energy spillover from PS II to PS I.  相似文献   

16.
Chloroplast proteins were phosphorylated under two test conditions: white light irradiance alone and white light irradiance with the addition of glucose and glucose oxidase, used to produce an anaerobic medium. The interaction of phospho-LHC II with Photosystem 1 (PS 1) was studied for two types of PS I preparation. Changes in the chlorophyll a/b ratio and the ratio of 650 and 680 nm band intensities (E650/E680) in fluorescence excitation spectra were used in calculating the phospho-LHC II portion which became associated with PS 1. It is shown that the associated portion of phospho-LHC II varies for each of the PS 1 preparations and phosphorylation procedures. Possible conclusions as regards the transfer of various sets of LHC II subpopulations under different phosphorylation procedures and the differences of interaction with PS 1 are discussed.Abbreviations PS 1 Photosystem 1 - PS 2 Photosystem 2 - LHC II light-harvesting chlorophyll a/b protein complex II - Chl chlorophyll - fluorescence quantum yield - f life time of fluorescence at =685 nm - F735 fluorescence band with a maximum at 735 nm - F685 fluorescence band with a maximum at 685 nm - E650/E680 ratio of amplitudes in excitation fluorescence spectrum at 650 and 680 nm  相似文献   

17.
We have constructed Arabidopsis thaliana plants that are virtually devoid of the major light-harvesting complex, LHC II. This was accomplished by introducing the Lhcb2.1 coding region in the antisense orientation into the genome by Agrobacterium-mediated transformation. Lhcb1 and Lhcb2 were absent, while Lhcb3, a protein present in LHC II associated with photosystem (PS) II, was retained. Plants had a pale green appearance and showed reduced chlorophyll content and an elevated chlorophyll a/b ratio. The content of PS II reaction centres was unchanged on a leaf area basis, but there was evidence for increases in the relative levels of other light harvesting proteins, notably CP26, associated with PS II, and Lhca4, associated with PS I. Electron microscopy showed the presence of grana. Photosynthetic rates at saturating irradiance were the same in wild-type and antisense plants, but there was a 10-15% reduction in quantum yield that reflected the decrease in light absorption by the leaf. The antisense plants were not able to perform state transitions, and their capacity for non-photochemical quenching was reduced. There was no difference in growth between wild-type and antisense plants under controlled climate conditions, but the antisense plants performed worse compared to the wild type in the field, with decreases in seed production of up to 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号