首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

2.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

3.
Airway smooth muscle (ASM) mass is likely to be an important determinant of airway responsiveness. Highly inbred Fisher rats model innate hyperresponsiveness, and also have more ASM in vivo than control Lewis rats. Platelet derived growth factor (PDGF) is an important endogenous growth factor for ASM, and partially purified PDGF-AB causes enhanced growth of Fisher rat ASM cells, compared to Lewis cells. The aim of the present study was to determine the mitogenic effects of all three recombinant PDGF isoforms on ASM cells, and investigate the mechanisms of enhanced Fisher ASM growth responses. The potential mechanisms assessed include PDGF receptor expression and activation (tyrosine phosphorylation), and intracellular calcium (Ca2+) responses to PDGF isoforms. Fisher ASM cells had a greater mitogenic response to PDGF-AB and -AA, and a greater Ca2+ response to -BB than Lewis ASM cells. A Ca2+ response was not necessary for a mitogenic response, and the effects of PDGF isoforms on Ca2+ were not associated with their effects on growth. Therefore, we suggest that enhanced Fisher mitogenic response to PDGF-AA and -AB is not mediated by differences in Ca2+ signalling. Western analysis of the PDGF receptor indicated a similar expression of beta-PDGF receptor in ASM cells from the two rat strains, but a greater expression of alpha-PDGF receptor in Fisher cells; however, phosphorylation of the PDGF receptor following growth stimulation did not differ between strains. This suggests a role for post-receptor signals, in addition to enhanced receptor expression, in the enhanced growth response of Fisher ASM cells to PDGF-AA and -AB.  相似文献   

4.
In order to determine whether distinct platelet-derived growth factor (PDGF) receptors (alpha and beta) can modulate the activity of one another, PDGF isoform (AA, BB, and AB)-stimulated changes in Ca2+i were monitored by digitized video microscopy in single cells upon sequential addition of PDGF isoforms. In Balb/c 3T3 fibroblasts, all PDGF isoforms were capable of stimulating increases in Ca2+i of 200-600% above basal levels, although with different potencies: BB greater than or equal to AB greater than AA. All cells were BB-PDGF-responsive, but only 74% of cells examined responded to AA-PDGF. The Ca2+i response elicited by BB-PDGF was inhibited by 60-75% in cells stimulated 10 min earlier with the AA isoform. The half-life of this inhibition was 22 min. In cells in which the alpha receptor was down-regulated by prolonged incubation with AA-PDGF, BB-induced Ca2+i responses were not inhibited. Pretreatment of cells with phorbol ester did not inhibit BB-PDGF-induced increases in Ca2+i, yet down-regulation of PKC activity prevented the AA-PDGF inhibition of BB-PDGF-induced Ca2+i responses. An increase in Ca2+i induced by AlF(4-)-stimulated IP3 generation did not inhibit a subsequent BB-PDGF Ca2+i response; however, attenuation of AA-PDGF-induced extracellular Ca2+ influx with EGTA prevented the inhibition of BB-PDGF-induced Ca2+i increases. Readdition of Ca2+ to the medium after removal of EGTA restored the inhibition of the BB-PDGF Ca2+i response. The inhibition of the BB-PDGF Ca2+i response by AA-PDGF was not caused by inhibition of PDGF receptor tyrosine autophosphorylation, which was unchanged after pretreatment with AA-PDGF. These results demonstrate: (a) that only a subpopulation of cells possess a functional alpha receptor-mediated response as assessed by AA-PDGF-induced increases in Ca2+i, whereas all cells possess the beta receptor-mediated responses; and (b) AA-PDGF and its associated alpha receptor can modulate the activity of the beta receptor through a mechanism that is dependent upon Ca(2+)-influx which may be controlled in part by PKC activation.  相似文献   

5.
Elevation of intracellular Ca2+ by platelet-derived growth factor (PDGF) and other growth factors involves both release of Ca2+ from intracellular Ca2+ stores and Ca2+ entry from the extracellular medium. Release from intracellular stores is believed to be mediated by inositol 1,4,5-trisphosphate (IP3) and the heparin-sensitive IP3 receptor. We studied the mechanism by which entry of extracellular Ca2+ is induced by PDGF. Intracellular free Ca2+ (Ca2+i) was measured in single cultured rat vascular smooth muscle cells using fura 2 microspectrofluorometry. In nominally Ca2(+)-free medium, PDGF (recombinant BB, 10 ng/ml) raised intracellular Ca2+ transiently (less than 5 min); addition of 2 mM Ca2+ to the bathing medium after 5 min caused a second, prolonged increase in intracellular Ca2+. Repeated changes in extracellular Ca2+ from 0 to 2 mM over 90 min caused rapid, parallel changes in Ca2+i of approximately 200 nM. This change in Ca2+i in response to changes in extracellular Ca2+ was virtually undetectable in control or thrombin-treated cells. The intracellular response to changes in medium Ca2+ after PDGF was completely blocked by 10 mM CoCl2, but not by 10(-7) M nicardipine. Microinjection of monoclonal antibodies to phosphatidylinositol 4,5-bisphosphate (PIP2) (kt 10, 2 mg/ml) totally abolished both mobilization of intracellular Ca2+ stores and entry of extracellular Ca2+. Consistent with this finding, maintenance of Ca2+ entry required ongoing receptor occupancy, since displacement of PDGF from its receptor with suramin (1 mM) eradicated extracellular Ca2+ entry in less than 5 min. To determine whether extracellular Ca2+ entry involves the heparin-sensitive IP3 receptor, cells were microinjected with heparin (4 mg/ml) prior to addition of PDGF. Heparin, but not chondroitin sulfate, prevented mobilization of intracellular Ca2+ stores but did not affect extracellular Ca2+ entry. We PDGF requires ongoing receptor occupancy and involves PIP2 or PIP2 metabolism. However, the signal which mediates PDGF-induced Ca2+ entry does not require the heparin-sensitive IP3 receptor.  相似文献   

6.
Expression of a transforming Ha-ras gene in NIH 3T3 cells transfected with an inducible Ha-ras construct leads to a rapid desensitization of the intracellular Ca2(+)-mobilizing system to bombesin and serum growth factors. Half-maximal depression of the Ca2+ response is observed 2 h after induction of p21ras. A maximum is obtained after 6 h. Bombesin-induced elevation of inositol 1,4,5-trisphosphate formation is also depressed in cells expressing Ha-ras. This, however, is a relatively late phenomenon and not yet detectable when maximal depression of the Ca2+ signal is observed. We conclude that the rapid densensitization of the Ca2(+)-releasing system to bombesin by Ha-ras is not caused by down-modulation or uncoupling of phospholipase C-coupled bombesin receptors. The inositol 1,4,5-trisphosphate-mediated release of intracellular Ca2+ is reduced in permeabilized cells expressing the Ha-ras oncogene. A depletion of intracellular Ca2+ stores by Ha-ras is unlikely since (i) the Ha-ras-induced growth factor-independent stimulation of inositol phosphate formation occurs several hours after reduction of the Ca2+ response and (ii) the Ca2+ load of intracellular nonmitochondrial Ca2+ stores was found to be unaffected by Ha-ras. We conclude that the desensitization of the Ca2(+)-mobilizing system is caused either by partial inhibition of inositol 1,4,5-trisphosphate-regulated Ca2+ channels or by interference of Ha-ras with Ca2+ translocation between intracellular Ca2+ compartments.  相似文献   

7.
A comparison of the effect of platelet-derived growth factor (PDGF) and bombesin on intracellular Ca2+ stores was carried out in Swiss 3T3 cells loaded with Fura-2. It was found that the tumor promoter thapsigargin (Tg) almost completely inhibited both the PDGF- and the bombesin-induced intracellular Ca2+ concentration ([Ca2+]i) rise, indicating that the two mitogens mobilize Ca2+ from intracellular pool(s) sensitive to the tumor promoter. It was also found that pre-treatment with PDGF almost totally and persistently (up to at least 30 min) inhibited the bombesin-, Tg- and ionomycin-induced rise in [Ca2+]i, whereas pre-treatment with bombesin had only a partial inhibitory effect on the PDGF, Tg and ionomycin [Ca2+]i response, both in the absence and in the presence of external Ca2+. On the other hand, vasopressin and bradykinin, which also stimulate hydrolysis of phosphoinositides in these cells, did not affect the [Ca2+]i response induced by the same agents. These results indicate that, despite the poor production of inositol 1,4,5-trisphosphate (InsP3), PDGF was capable of totally discharging and maintaining discharged the InsP3-sensitive stores of intracellular Ca2+, regardless of whether extracellular Ca2+ was present in the medium. Bombesin only partially caused this effect. On the contrary, bradykinin and vasopressin, after releasing intracellular Ca2+ allowed an almost total refilling of the pools. It is interesting to note that, at variance with PDGF and bombesin, neither bradykinin nor vasopressin are able to induce a mitogenic response in Swiss 3T3 cells.  相似文献   

8.
The response of cytosolic calcium [Ca2+]i to epidermal growth factor (EGF), fetal calf serum, and nucleotides was determined in individual A431 cells, using the fluorescent probe fura-2 and quantitative digital video fluorescence microscopy. In the presence of 1 mM external Ca2+, EGF caused a rapid rise in [Ca2+]i, followed by a slower and variable decrease. The cells responded after a lag that varied from 10 to 30 seconds, and there was considerable cell-to-cell variation in extent of the rise in [Ca2+]i. A second challenge with EGF gave negative results. No response was obtained in nominally Ca2+-free medium supplemented with 100 microM EGTA. Somewhat similar results were obtained with fetal calf serum except that a rise in [Ca2+]i was observed both in the presence and absence of external Ca2+. The A431 cells responded to external ATP with a rise in [Ca2+]i in less than 10 seconds, both in Ca2+-containing and Ca2+-free media. A coverslip with attached cells was mounted on a small chamber, allowing complete change of medium in 2 seconds. A nearly full response was obtained with only 10 seconds of contact of cells with ATP-containing medium. After washing out ATP, there was little or no response to a second addition given 100 seconds after the first. However, a second response was obtained when the concentration of agonist was increased 10-20-fold. These data favor the idea of receptor desensitization. Both homologous and heterologous receptor desensitization was observed. A transient rise in [Ca2+]i was also noted with UTP, while ITP and CTP were inactive.  相似文献   

9.
Mitogenic stimulation of density-arrested C3H 10T1/2 mouse fibroblasts by serum or purified platelet-derived growth factor (PDGF) was potently inhibited by retinyl acetate (RAc; IC50 = 0.1 microgram/ml, 0.3 x 10(-6) M) when administered during the first 2 hours of mitogen exposure. This inhibitory effect of RAc coincided with a period early in the cell growth-division cycle when density-arrested C3H 10T1/2 cells stimulated by PDGF were found to require physiological levels of extracellular Ca2+ for the transition from G0 to G1 of the cell cycle. To determine if the inhibitory effect of RAc was mediated through alterations in the Ca2+ signaling pathway induced by mitogens, we examined Fura-2-loaded fibroblasts for changes in the Ca2+ response elicited by PDGF. Addition of PDGF (5 ng/ml) induced a transient increase in the [Ca2+]i that was not significantly effected by the extracellular Ca2+ concentration. Treatment of cells with RAc caused a concentration- and time-dependent inhibition of this PDGF-stimulated Ca2+ flux (IC50 = 0.45 microgram/ml or 1.5 x 10(-6) M; t1/2 = 15 min), whereas release of intracellularly stored Ca2+ by thrombin was unaffected by RAc (1.2 micrograms/ml, 4 x 10(-6) M). Treatment with RAc did not significantly affect PDGF binding to cell surface receptors or the generation of inositol phosphates. These results suggest that the mechanism by which RAc inhibits PDGF- or serum-induced mitogenesis is through modulation of the Ca2+ signal stimulated by PDGF, and thereby depriving the cell of a rise in intracellular Ca2+ necessary for progression through the cell cycle.  相似文献   

10.
Tóth A  Wang Y  Kedei N  Tran R  Pearce LV  Kang SU  Jin MK  Choi HK  Lee J  Blumberg PM 《Life sciences》2005,76(25):2921-2932
The vanilloid receptor subtype 1 (TRPV1 or VR1) is expressed in nociceptive primary afferents of the C-fiber 'pain' pathway and has attracted considerable attention as a therapeutic target. Here, using rat TRPV1 heterologously expressed in Chinese hamster ovary cells, we show that different agonists show different patterns of modulation of the intracellular Ca2+ concentration, monitored in individual cells by fura-2 Ca2+ imaging. We identified 5 parameters (potency, maximal response, latency of response, variability of latency of response among individual cells, and desensitization) which behaved differently for different compounds. The potencies of the compounds examined ranged from EC50 values of 80 pM to 9 microM. Peak levels of induced [Ca2+]i were observed either higher (RTX) or lower (anandamide) than for capsaicin. Significant latencies of response were observed for some (e.g. RTX) but not other derivatives, with great variation among individual cells in this latency. Marked desensitization after stimulation was detected in some cases (e.g. anandamide, capsaicin); for others, no desensitization was observed. We conclude that structurally diverse vanilloid agonists induce marked diversity in the patterns of Ca2+ response. This diversity of response may provide opportunities for pharmacological exploitation.  相似文献   

11.
Intracellular free Ca2+ was monitored in suspensions of 1321N1 astrocytoma cells by using the Ca2+ indicator fura-2. The cytoplasmic Ca2+ concentration increased from 237 +/- 6 nM to 1580 +/- 170 nM within 3-5 s of addition of 300 microM-carbachol. After the peak in response, the Ca2+ concentration diminished, establishing a new steady state in about 1 min that was approx. 150 nM above the previous baseline. Histamine increased cytoplasmic Ca2+ to about 40% of the maximal value seen with carbachol. In Ca2+-free buffer each agonist elicited a normal initial increase in cytoplasmic Ca2+, but the sustained portion of the response was abolished. The increase in Ca2+ in response to either carbachol or histamine could be completely inhibited by pretreating the cells with carbachol; the response to carbachol could be partially inhibited by pretreating the cells with histamine. The Ca2+ responses did not recover in the continued presence of carbachol. However, if the carbachol was washed out or if atropine was added after carbachol, the responses to agonist recovered in a time-dependent manner (half-time 3-4 min), and recovery depended on the presence of extracellular calcium. The results indicate that carbachol and histamine stimulate release of Ca2+ from the same intracellular Ca2+ store, that depletion of this store is responsible for heterologous desensitization between these two agonists, and that repletion of the agonist-sensitive Ca2+ pool does not occur in the continued presence of agonist or in the absence of extracellular Ca2+.  相似文献   

12.
The effect of platelet-derived growth factor (PDGF) on cellular Ca2+ was examined in BALB/c-3T3 cells. PDGF induced: A decrease in cell 45Ca2+ content. An apparent increased rate of efflux of preloaded 45Ca2+. A decrease in residual intracellular 45Ca2+ remaining after rapid efflux. When added after the rapid phase of efflux of 45Ca2+ had occurred, an immediate decrease in post-efflux residual intracellular 45Ca2+. All of the observed changes in 45Ca2+ induced by PDGF are consistent with a rapid release of Ca2+ from an intracellular Ca2+ pool that has the slowest efflux and is relatively inaccessible to extracellular EDTA. When incubated with chlortetracycline (CTC), a fluorescent Ca2+ probe, 3T3 cell mitochondria became intensely fluorescent. Addition of PDGF resulted in a rapid decrease in CTC fluorescence intensity in both adherent and suspended 3T3 cells. The effects of PDGF on 3T3 cell Ca2+ stores and CTC fluorescence intensity were identical with the effects of the Ca2+ ionophore A23187 and of the proton ionophore carbonyl cyanide m-chlorophenyl hydrazone. Serum, which contains PDGF, also altered intracellular Ca2+ stores, but platelet-poor plasma, which does not contain PDGF, had no effect. EGF, insulin, and tetradecanoyl phorbol acetate (TPA), other factors which stimulate 3T3 cell growth, did not alter 3T3 cell Ca2+ stores. Release of Ca2+ from intracellular sequestration sites may be a mechanism by which PDGF stimulates cell growth.  相似文献   

13.
Changes in the intracellular concentration of calcium [( Ca2+]i) have been shown to mediate the physiological effects of certain agonists. Ca2+ mobilization occurs through multiple mechanisms which involve both influx and internal release of Ca2+. Prostaglandin F2 alpha (PGF2 alpha) caused a transient mobilization of intracellular Ca2+ in 3T3-L1 fibroblasts. This effect was characterized by fluorescence measurements of trypsin-treated cells loaded with fura-2/AM. In the absence of extracellular Ca2+, the peak amount of Ca2+ mobilized by PGF2 alpha was decreased by 70%, a lag time before the onset of [Ca2+]i increase was observed, and the rate of rise of [Ca2+]i was slowed. Addition of NaF (10 mM) to fura-2-loaded 3T3-L1 cells caused a dose-dependent increase in [Ca2+]i after a brief (approximately 10 s) lag. Maximal effects (approximately 300 nM) were observed at 5-10 mM-NaF. This effect was dependent on the presence of extracellular Ca2+ and appeared to be independent of inositol phosphate production. After reaching a peak at around 40 s after fluoride addition, [Ca2+]i returned to near-baseline within 120 s. This return of [Ca2+]i to near-baseline after fluoride stimulation and the inability of the cells to respond to a subsequent addition of fluoride indicated that the response to fluoride underwent desensitization. Similarly, the pathway used by PGF2 alpha to mobilize Ca2+ underwent desensitization. Exposure of the cells to a maximally effective concentration of fluoride and subsequent addition of PGF2 alpha produced a [Ca2+]i response to PGF2 alpha which was similar in magnitude and kinetics to that seen for PGF2 alpha in the absence of extracellular Ca2+. Conversely, prior exposure of cells to PGF2 alpha diminished the ability of fluoride to mobilize Ca2+. PGF2 alpha also increased inositol phosphate formation, with a time course and dose-response consistent with its ability to increase [Ca2+]i. Prior exposure of cells to fluoride did not change the time course or dose-response characteristics of PGF2 alpha-induced generation of inositol phosphates. These data suggest that PGF2 alpha and fluoride share a common mechanism of activating Ca2+ influx in 3T3-L1 cells.  相似文献   

14.
Swiss 3T3 cells incubated for 60 h with [3H]inositol incorporated radioactivity into phosphatidylinositol (PI) and the two polyphosphoinositides phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). On stimulation with platelet-derived growth factor (PDGF) there were significant increases in the levels of inositol 1-phosphate (IP1), inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). The effect of PDGF and IP3 on Ca2+ mobilization was studied in both intact cells and in 'leaky' cells that had been permeabilized with saponin. In intact cells, PDGF stimulated the efflux of 45Ca2+, whereas IP3 had no effect. Conversely, IP3 stimulated 45Ca2+ efflux from 'leaky' cells, which were insensitive to PDGF. 'Leaky' cells, which accumulated 45Ca2+ to a steady state within 20 min, were found to release approx. 40% of the label within 1 min after addition of 10 microM-IP3. This stimulation of 45Ca2+ release by IP3 was reversible and was also dose-dependent, with a half-maximal effect at approx. 0.3 microM. It seems likely that an important action of PDGF on Swiss 3T3 cells is to stimulate the hydrolysis of PIP2 to form IP3 and diacylglycerol, both of which may function as second messengers. Our results indicate that IP3 mobilizes intracellular Ca2+, and we propose that diacylglycerol may act through C-kinase to activate the Na+/H+ antiport. By generating two second messengers, PDGF can simultaneously elevate the intracellular level of Ca2+ and alkalinize the cytoplasm by lowering the level of H+.  相似文献   

15.
Bradykinin (BK) and platelet-derived growth factor (PDGF) act as mitogens and stimulate phosphatidylinositol (PI) turnover in human fibroblasts. By coupling whole-cell electrophysiological measurements with cytosolic Ca2+ determinations using fura-2 microfluorimetry, we have studied the changes in cytosolic calcium and in membrane conductance in single cells following stimulation with BK or PDGF. Both agonists produce variable patterns of response which include: single transient, sustained pulsations, damped oscillations, no response. In all cases, there is a very good temporal correlation between increases in intracellular Ca2+ and membrane current. The cytosolic calcium elevation appears to be insensitive to membrane potential changes, indicating that Ca2+ is released from an intracellular source. The Ca2(+)-activated current is not blocked by 1 microM apamin or by 0.5 mM (+)-tubocurarine; it is instead strongly reduced by 5 mM tetraethylammonium (TEA). We can conclude that BK and PDGF induce very similar early responses in human fibroblasts, and that the variable pattern of response does not depend on the particular mitogen used. The membrane currents are due to a kind of Ca2(+)-activated K+ channels which, according to their voltage-dependence and specific blockers, belong to the "maxi K+" class.  相似文献   

16.
Desensitization of catecholamine (CA) release from cultured bovine adrenal chromaffin cells was studied to characterize the phenomenon of desensitization and to attempt an elucidation of the mechanism(s) involved in this phenomenon at the level of the isolated chromaffin cell. Prior exposure of chromaffin cells to nicotinic cholinergic agonists [acetylcholine (ACh) or nicotine] caused a subsequent depression or desensitization of CA release during restimulation of the cells with the same agonists. Rates of development of and recovery from nicotinic desensitization were in the minute time range and the magnitude of nicotinic desensitization of CA release was greater at 37 degrees C than at 23 degrees C. ACh- (or nicotine)-induced desensitization was shown to be the result of two processes: (1) a Ca2+-dependent component of desensitization, possibly due to a depletion of intracellular CA stores and (2) a Ca2+-independent, depletion-independent component of desensitization. Prior exposure of cultured chromaffin cells to an elevated concentration of K+ also resulted in desensitization of K+-induced CA release in these cells. K+-induced desensitization was completely Ca2+-dependent and was shown to be the result, at least in part, of a mechanism that is independent of depletion of CA stores.  相似文献   

17.
Growth factors stimulate DNA synthesis of neoplastic cells but not of non-neoplastic cells in suspension cultures. Similarly, growth ceases in dense monolayers of non-neoplastic cells, while crowded neoplastic cells continue to grow. The mechanism of these important phenotypic changes is unknown; the block in growth stimulation could occur in early events of signal transduction at the plasma membrane or in a late step in the final steps of gene activation and induction of DNA synthesis. One particular early intracellular event, [Ca2+]i increases, is in fact necessary for the induction of DNA synthesis in attached non-neoplastic Balb/c 3T3 cells stimulated by platelet-derived growth factor (PDGF). We therefore used digital image analysis of intracellular Fura-2 fluorescence to determine whether PDGF can stimulate [Ca2+]i transients in suspension or in dense monolayer cultures of Balb/c 3T3 cells. In dense cells (greater than 8 x 10(4) cells/cm2) the basal [Ca2+]i and [Ca2+]i response to PDGF stimulation were both lower than those in sparser, more spread cells. PDGF also did not release internal stores of Ca2+ or produce Ca2+ influx in completely suspended cells. Remarkably, attachment alone, with minimal cell spreading, was enough to reinitiate the entire early signalling mechanism stimulated by PDGF. Thus, a block in PDGF-induced [Ca2+]i increases may contribute to the inability of PDGF to stimulate DNA synthesis in suspended non-neoplastic cells. This early block in signal transduction must be abrogated in neoplastic cells growing in suspension and dense monolayer cultures.  相似文献   

18.
To investigate the role of intracellular Ca2+ in the mechanism of cellular proliferation of vascular smooth muscle cells (VSMC), the effects of Ca2+-antagonists and calmodulin (CaM) inhibitors on DNA synthesis stimulated by serum-derived growth factors were studied in cultured VSMCs derived from rat aorta. DNA synthesis assessed by incorporation of [3H]thymidine into the cells was significantly stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF) or fetal bovine serum (FBS), of which the effects were dose-dependently inhibited by a variety of Ca2+-antagonists, such as verapamil, diltiazem and nicardipine. Trifluoperazine and W-7, both specific CaM inhibitors, similarly inhibited DNA synthesis stimulated by EGF, PDGF or FBS in a dose-dependent manner, whereas W-5, a less specific CaM inhibitor, was minimally effective. These data suggest that the Ca2+-CaM system plays an important role in the mechanism of growth factor-induced DNA synthesis in VSMCs.  相似文献   

19.
Doubly transfected human embryonal kidney cells (clone E2M11 of the HEK 293 cell line) expressing both thyrotropin-releasing hormone (TRH) receptors and G11alpha protein in high amounts were used to analyze the desensitization phenomenon of the Ca2+-mobilizing pathway. Quite unexpectedly, we did not observe any significant desensitization of the [Ca2+]i response to TRH in these cells after repeated or prolonged incubation with the hormone (up to 5 h). Under the same conditions, the TRH-induced [Ca2+]i response was completely desensitized in the parent cell line (293-E2 cels) expressing TRH receptors alone. In both cell lines, inositol phosphate response was desensitized after TRH exposure, although basal levels of inositol phospates in TRH-pretreated cells were much higher than in "naive" TRH-unexposed cells. These data suggest a significant role of the G protein G11alpha in desensitization of the Ca2+-mobilizing pathway occuring after repeated or long-term exposure of target cells to TRH-receptor agonists.  相似文献   

20.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) produced by growth factors and mitogens have been studied using aequorin-loaded Swiss 3T3 cells. Decreasing free Ca2+ in the external medium by using EGTA had no significant effect on the increase in [Ca2+]i produced by vasopressin, bradykinin, bombesin or prostaglandin E2, but reduced the increase in [Ca2+]i produced by platelet derived growth factor (PDGF) by 58%, by prostaglandin E1 44% and by prostaglandin F2 alpha 47%. The dihydropyridine Ca2+-channel antagonist nifedipine at 10 microM inhibited the [Ca2+]i response to PDGF by 41% in both the presence of and in the absence of external Ca2+. Methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (BAY K8644), a Ca2+-channel agonist, at 10 microM produced an increase in [Ca2+]i and decreased the [Ca2+]i response to PDGF by 39%. Nifedipine did not block 45Ca2+ uptake or release by inositol 1,4,5-trisphosphate in saponin-permeabilized Swiss 3T3 fibroblasts but BAY K8644 inhibited 45Ca2+ release by inositol 1,4,5-trisphosphate. The results suggest that the increase in [Ca2+]i caused by PDGF in Swiss 3T3 fibroblasts is due to the influx of external Ca2+ through dihydropyridine sensitive Ca2+ channels, as well as release of internal Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号