首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨抑制甲基转移酶(DNMT)对K562细胞中癌-睾丸抗原表达的影响及其机制。方法:分别采用针对DNMT家族不同成员的siRNA转染K562细胞,,采用RT-PCR检测细胞中DNMT及癌-睾丸抗原的水平表达,并采用甲基化特异PCR(MSP)检测部分癌-睾丸抗原基因启动子的甲基化状态。结果:经siRNA干扰后,K562细胞中DNMT1、DNMT3a和DNMT3b的表达量均明显降低,癌-睾丸抗原CT10的启动子区序列发生了去甲基化,但处于非甲基化状态的MAGE-A1启动子区没有发生任何改变。干扰DNMT组的K562细胞,再表达癌-睾丸抗原CT10、PRAME和CT9,而MAGE-A1、SSX-1的表达上调,但是NY-ESO-1、HCA587和HCA661的表达状况均没有任何影响。结论:在K562细胞中,干扰DNMT可使部分癌-睾丸抗原基因的启动子区发生去甲基化,从而导致相应的癌-睾丸抗原分子的再表达或表达增加。  相似文献   

2.
《生物磁学》2011,(20):3801-3804,3808
目的:探讨抑制甲基转移酶(DNMT)对K562细胞中癌-睾丸抗原表达的影响及其机制。方法:分别采用针对DNMT家族不同成员的siRNA转染K562细胞,采用RT—PCR检测细胞中DNMT及癌-睾丸抗原的水平表达,并采用甲基化特异PCR(MSP)检测部分癌.睾丸抗原基因启动子的甲基化状态。结果:经siRNA干扰后,K562细胞中DNMT1、DNMT3a和DNMT3b的表达量均明显降低,癌-睾丸抗原CTl0的启动子区序列发生了去甲基化,但处于非甲基化状态的MAGE.A1启动子区没有发生任何改变。干扰DNMT组的K562细胞,再表达癌-睾丸抗原CT10、PRAME和CT9,而MAGE-A1、ssx-1的表达上调,但是NY-ESO—1、HCA587和HCA661的表达状况均没有任何影响。结论:在K562细胞中,干扰DNMT可使部分癌-睾丸抗原基因的启动子区发生去甲基化,从而导致相应的癌-睾丸抗原分子的再表达或表达增加。  相似文献   

3.
DNA甲基化修饰在基因的表观遗传调控中发挥重要作用,而DNA甲基转移酶(DNMT)为DNA甲基化模式建立和维持所必需。哺乳动物细胞主要含3种DNMT,DNMT1的主要功能是维持甲基化,DNMT3a和DNMT3b则催化DNA的从头甲基化。DNMT活性与功能改变导致的基因表达异常与多种肿瘤的发生和发展密切相关,由此成为肿瘤治疗和新型抗肿瘤药物研发的重要分子靶点。  相似文献   

4.
目的:探讨基因CHFR在B细胞淋巴瘤Raji 细胞中的表达,以及基因甲基化对Raji 细胞增殖和凋亡中所产生的影 响。方法:体外培养人B细胞淋巴瘤细胞株Raji 细胞,用不同浓度的去甲基化试剂5- 氮杂-2 脱氧胞苷处理Raji 细胞株,通过 RT-PCR 检测CHFR 基因表达水平的变化,通过MS-PCR 检测基因甲基化变化,CCK 法及流式细胞术检测Raji 细胞增殖 及凋亡变化。结果: 基因在Raji 细胞中出现弱表达,经去甲基化试剂处理后基因表达水平增高,随药物浓度增加Raji 细胞的抑制率及凋亡率增高。结论:5-氮杂-2 脱氧胞苷可以恢复基因表达水平,抑制Raji 细胞的增殖,促进凋亡。基 因在细胞增殖起负向调控的作用。  相似文献   

5.
DNA甲基转移酶1(DNMT1)负责DNA甲基化维持,DNA甲基转移酶3b(DNMT3b)主要负责DNA从头甲基化,在体细胞中同时干扰Dnmt1、Dnmt3b表达会给细胞带来何种影响还未见报道。实验以小鼠胚胎成纤维细胞为实验对象,用RNA干扰方法对Dnmt1和Dnmt3b进行敲低,研究分别干扰和同时干扰这两个基因对小鼠胚胎成纤维细胞凋亡、基因组甲基化水平的影响。研究发现,si RNA转染后24 h,Dnmt3b干扰组和Dnmt1+Dnmt3b同时干扰组细胞的增殖细胞核抗原(PCNA)mRNA水平显著降低(P0.05);转染后48h,Dnmt3b单独干扰组、Dnmt1+Dnmt3b同时干扰组中细胞凋亡显著增加(P0.05);Dnmt3b单独干扰组细胞基因组甲基化水平下降32%(P0.01),Dnmt1+Dnmt3b同时干扰组细胞的基因组甲基化水平下降约44%(P0.01)。结果表明,DNMT3b在小鼠胚胎成纤维细胞正常增殖、基因组甲基化水平的维持上具有重要作用。  相似文献   

6.
目的:探讨CHFR基因在B细胞淋巴瘤Raji细胞中的表达,以及CHFR基因甲基化对Raji细胞增殖和凋亡中所产生的影响。方法:体外培养人B细胞淋巴瘤细胞株Raji细胞,用不同浓度的去甲基化试剂5-氮杂-2脱氧胞苷处理Raji细胞株,通过RT-PCR检测CHFR基因表达水平的变化,通过MS-PCR检测CHFR基因甲基化变化,CCK法及流式细胞术检测Raji细胞增殖及凋亡变化。结果:CHFR基因在Raji细胞中出现弱表达,经去甲基化试剂处理后CHFR基因表达水平增高,随药物浓度增加Raji细胞的抑制率及凋亡率增高。结论:5-氮杂-2脱氧胞苷可以恢复CHFR基因表达水平,抑制Raji细胞的增殖,促进凋亡。CHFR基因在细胞增殖起负向调控的作用。  相似文献   

7.
肝癌缺失基因-1(deleted in liver cancer-1,DLC-1)在多种肿瘤中呈现表达缺失或表达下调,这种异常表达主要与由DNA甲基转移酶(DNA methyltransferases,DNMTs)参与的启动子区异常甲基化有关。RT-PCR结果显示DLC-1在永生化鼻咽上皮细胞NP69和干扰DNMTs的5-8F细胞中的表达水平较未干扰的鼻咽癌细胞明显升高。甲基化特异性PCR(methylation-specific PCR,MSPCR)结果则表明DLC-1启动子区在表达下调或缺失的鼻咽癌细胞中均存在异常高甲基化,而干扰DNMTs后5-8F细胞中DLC-1启动子区甲基化状态被逆转,其中特异性干扰DNMT1后效果略为显著,提示DNA甲基转移酶活性对于鼻咽癌中DLC-1启动子区甲基化水平具有重要的调控作用,而DNMT1的调控作用更为突出。  相似文献   

8.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   

9.
DNA甲基化(DNA methylation)及去甲基化属于常见的表观遗传修饰,可介导多种生理和病理过程。DNA甲基化及去甲基化修饰参与基因的表达调控,且二者的动态平衡可以维持遗传表达稳定性。DNA甲基转移酶(DNA methyltransferase,DNMT)主要包括DNMT1、DNMT3A、DNMT3B、DNMT3L,DNA去甲基化酶(DNA demethylase)主要指10-11易位蛋白(ten-eleven-translocation protein,TET)家族,包括TET1、TET2、TET3,是调节DNA甲基化和去甲基化的重要酶类。TET酶是目前发现的调节DNA去甲基化(DNA demethylation)过程中最重要的酶。综述了TET酶在DNA去甲基化修饰中的作用机制,探讨了DNA去甲基化酶在生长发育和疾病中的关键作用,以期为今后表观遗传学的相关研究提供新思路。  相似文献   

10.
癌睾丸抗原所具有的表达特性和免疫原性使其有可能成为肿瘤免疫治疗的靶抗原,通过DNA去甲基化提高癌睾丸抗原基因的表达,是提高癌睾丸抗原疫苗疗效的途径之一。  相似文献   

11.
《遗传》2020,(1)
药物诱导的长散在重复序列LINE-1异常激活可促进细胞基因组不稳定,而基因组不稳定是促进肿瘤发生发展和耐药表型形成的重要因素。因此,探索LINE-1异常激活的分子机制具有重要的理论和临床意义。DNA甲基化是调控基因表达的重要方式,已知DNA甲基转移酶家族成员DNMT3a不仅能通过促进基因启动子甲基化抑制基因表达,还可通过增强基因内部甲基化上调基因表达。本实验室前期研究发现,将乳腺癌细胞暴露于化疗药物可诱导LINE-1异常高表达,但LINE-1启动子甲基化水平并无显著改变。本研究进一步探讨了在化疗药物压力下DNMT3a是否可通过增强LINE-1基因内部甲基化水平促进LINE-1在乳腺癌细胞中的异常高表达。ChIP实验和甲基分析结果显示,用化疗药物紫杉醇(PTX)处理乳腺癌细胞,不仅可以诱导DNMT3a表达,而且可以促进DNMT3a与LINE-1基因内部区域的结合,提升其基因内部甲基化水平,进而上调LINE-1的表达水平。利用表达载体增加细胞内DNMT3a的表达水平,可显著上调LINE-1基因内部的甲基化及基因的表达水平,而下调DNMT3a的表达可有效抑制LINE-1表达。上述研究结果表明,DNMT3a介导的基因非启动子区甲基化在药物诱导的LINE-1异常激活中发挥重要作用,为认识LINE-1在乳腺癌化疗耐药性形成过程中异常激活的机制提供了新思路。  相似文献   

12.
摘要 目的:探讨UPF1甲基化和miR-744-5p/CCND1在甲状腺乳头状癌中的作用机制研究。方法:将人甲状腺乳头状癌细胞株TCP-1和正常甲状腺上皮细胞Nthy-ori-3分别用去甲基化试剂5-Aza-CdR进行干预,分别在干预前后采用甲基化特异性PCR技术检测UPF1基因甲基化变化,采用Western-Blotting 检测干预UPF1、DNMT1、miR-744-5p、CCND1蛋白相对表达,采用transwell细胞侵袭实验检测细胞侵袭情况。结果:PCR扩增显示,UPF1基因在Nthy-ori-3组仅出现非甲基化引物扩增条带(U条带),在TCP-1组仅出现甲基化引物扩增条带(M条带)。经5-Aza-Cdr作用后,UPF1基因甲基化扩增条带减少,甲基化表达降低。各组UPF1、DNMT1、miR-744-5p、CCND1蛋白相对表达差异具有统计学意义(P<0.05)。与Nthy-ori-3组比较,TCP-1组DNMT1、UPF1蛋白相对表达明显提高,miR-744-5p、CCND1蛋白相对表达明显降低(P<0.05);与TCP-1组比较,TCP-1干预组DNMT1、UPF1蛋白相对表达明显降低,miR-744-5p、CCND1蛋白相对表达明显提高(P<0.05)。与TCP-1组比较,TCP-1干预组细胞侵袭、迁移数量明显减少(P<0.05)。结论:UPF1甲基化存在于甲状腺乳头状癌中,UPF1基因甲基化的表达缺失可能抑制miR-744-5p/CCND1轴,在甲状腺乳头状癌发生发展中发挥关键作用。  相似文献   

13.
DNA甲基转移酶(DNA methyltransferase, DNMT)是表观遗传学研究热点. 本文分析DNMT1、DNMT2、DNMT3A、DNMT3B、 DNMT3L在成人胃粘膜的表达,并初步研究DNMT抑制剂对胃粘膜细胞的影响. 免疫组织化学法对60例成人胃粘膜组织分析发现 ,5种DNMT均在组织中表达,以DNMT2、DNMT3B表达率较高,DNMT3L、DNMT3A次之,DNMT1较低.进一步分析发现,幽门螺杆菌 感染与非感染的胃粘膜组织有DNMT表达差异,以感染组中DNMT1、DNMT2、DNMT3B表达增强较显著. 免疫荧光法及Western免 疫印迹法对胃粘膜细胞株GES 1分析发现,5种DNMT亦在细胞中表达;且DNMT1为胞核胞浆共表达,DNMT2为胞核表达, DNMT3A、DNMT3B、DNMT3L为胞浆表达. 噻唑蓝比色法研究GES-1发现,DNMT抑制剂5-氮杂-2′-脱氧胞苷可抑制GES 1增 殖,并呈时间剂量依赖. 研究提示,DNMT在成人胃粘膜表达并发挥作用,幽门螺旋杆菌感染可能与DNMT表达异常相关.  相似文献   

14.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

15.
抑癌基因OPCML的甲基化失活是肿瘤发生的重要机制,因此采用药物逆转抑癌基因的失活状态是肿瘤防治的重要策略。研究表明,Luteolin可在一定程度上抑制DNA的甲基化转移酶(methyltransferase)的活性,但木犀草素是否能逆转OPCML的失活状态目前尚不明确。本研究通过体外培养肝癌细胞系HepG2,用不同浓度木犀草素处理后,采用实时定量PCR和Western blotting分别检测OPCML、DNMT1的m RNA和蛋白表达;甲基特异性PCR(MSP)和DNA甲基转移酶(DNA methyltransferases)催化实验分析OPCML基因启动子区域甲基化及细胞核中甲基化活性;ELISA分析木犀草素处理前后对核转录因子Sp1活性的变化;RNA干扰及慢病毒转染等方法观察Sp1在介导甲基化及CPCML表达中的作用。最后建立裸鼠异种移植瘤动物模型,观察木犀草素对异种移植瘤生长的抑制作用。结果显示,Hep G2细胞基础状态下OPCML表达水平较低,其启动子区域甲基化水平较高,而经0~30μmol/L木犀草素处理后,能显著增强OPCML蛋白和m RNA的表达,并能降低其启动子甲基化水平以及细胞核中甲基化活性。同时,木犀草素也能抑制Hep G2细胞中Sp1的活性以及DNMT1的表达。si RNA干扰OPCML后,可逆转木犀草素对Hep G2细胞的生长抑制效应,上调细胞内Sp1表达后,同时伴有DNMT1表达增加及OPCML表达降低。此外,木犀草素也能上调裸鼠异种移植瘤中OPCML表达并抑制移植瘤生长的生长。以上结果表明木犀草素可能通过降低细胞内甲基化水平而上调OPCML基因表达,最终抑制Hep G2细胞生长增殖。  相似文献   

16.
DNA甲基化是生命体最主要的表观遗传修饰之一。哺乳动物DNA甲基化主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶(5-methylcytosine,5m C)。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立,甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。现结合国内外同行研究进展,介绍课题组近年来对DNA甲基化修饰酶的结构与功能研究。  相似文献   

17.
DNA甲基转移酶(DNA methylationtransferases,DNMTs)是哺乳动物建立与维持基因甲基化的酶类家族,参与基因表达和调控等生物学过程。其中DNA甲基转移酶3A(DNA methyltransferase 3 Alpha,DNMT3A)是机体重要DNMTs之一,DNMT3A突变或异常表达所诱导的基因甲基化引起机体相关因子活性失调进而诱发疾病发生,DNMT3A介导的基因甲基化与人类常见病毒感染所致疾病密切相关。本篇综述从人类常见病毒感染宿主的角度出发,对DNMT3A在促进病毒感染与诱发疾病中的作用进行阐述,为进一步探究以DNMT3A为病毒感染性疾病治疗靶点提供参考和思路。  相似文献   

18.
已有研究证实蟾毒灵具有抑制肿瘤细胞增殖及诱导细胞凋亡的作用,在白血病治疗中疗效显著,然而其机制尚未阐明。本研究试图探讨蟾毒灵对人红系白血病(HEL)细胞增殖,肾母细胞瘤基因1 (Wilms'tumor 1 gene, WT1)甲基化的影响及其可能的作用机制。本研究采用不同浓度的蟾毒灵处理HEL细胞,观察细胞形态、增殖情况和细胞周期,采用RT-PCR、Western blotting和免疫细胞化学法检测WT1的mRNA和蛋白表达水平,并用甲基化特异性分析WT1的DNA甲基化和DNA甲基转移酶3a (DNMT3a)的蛋白表达水平。研究结果表明,蟾毒灵对HEL细胞的增殖抑制作用呈剂量依赖性,抑制率为23.13%~84.62%。在蟾毒灵处理的HEL细胞中观察到典型的凋亡形态特征;细胞周期增殖指数由75.45降至49.67;WT1 mRNA及其蛋白表达水平随着蟾毒灵剂量的增加而逐渐降低,同时WT1基因的甲基化状态由未甲基化状态变为部分或完全甲基化状态。而蟾毒灵处理后DNMT3a蛋白的表达水平逐渐增加,呈剂量依赖性。我们的研究初步说明蟾毒灵不仅能显著抑制HEL细胞增殖,阻滞G0/G1期细胞周期,还能诱导细胞凋亡,下调WT1的表达水平。  相似文献   

19.
DNA甲基化是重要的表观遗传修饰,主要发生在DNA的CpG岛. DNA的甲基化通过DNA甲基转移酶(DNA methyltransferases, DNMTs)完成. DNA甲基化参与了细胞分化、基因组稳定性、X染色体失活、基因印记等多种细胞生物学过程.单基因水平及基因组范围内的DNA甲基化改变在肿瘤发生发展中亦发挥重要作用. 抑癌基因的异常甲基化引起的表达抑制,可导致肿瘤细胞的增殖失控和侵袭转移,并参与肿瘤组织的血管生成过程.在许多肿瘤的研究中都发现了基因组整体DNA低甲基化所导致的染色体不稳定性. 本文从DNA的异常高甲基化和低甲基化两方面论述了DNA甲基化在细胞恶变发生发展过程中的改变及其影响,并阐述了DNA甲基化改变在肿瘤诊断和治疗中的作用.  相似文献   

20.
DNA甲基化与脊椎动物胚胎发育   总被引:1,自引:0,他引:1  
杨晓丹  韩威  刘峰 《遗传》2012,34(9):1108-1113
DNA甲基化是指DNA甲基转移酶(DNMT)将DNA序列中的5′胞嘧啶转变为5′甲基胞嘧啶的化学修饰, 可以调控基因的时空特异性表达, 从而影响细胞命运决定和分化等生物学过程。近年来研究发现, DNA甲基化在脊椎动物胚胎早期发育中有重要作用, Dnmt基因的缺失会影响胚胎早期发育和多个器官的形成及分化, 如胚胎早期致死、内脏器官和神经系统终末分化缺陷以及血液发生紊乱等。文章总结了DNA甲基化转移酶在小鼠和斑马鱼发育过程中的动态变化, 并系统阐述了DNA甲基化在胚胎早期发育和器官发生中的作用, 重点揭示DNA 甲基化转移酶与组蛋白甲基化转移酶如何协同调控DNA甲基化从而影响基因转录的分子机理。DNA甲基化作为一种关键的表观遗传学因素, 全面系统地理解其在胚胎发育过程中的作用机制对靶向治疗人类相关疾病有一定的理论指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号