首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Li HJ  Li Z  Ma B 《生理科学进展》2010,41(4):303-306
雌激素因具有广泛的生物学效应,而日益成为研究的热点。目前已经清楚雌激素通过雌激素α受体所发挥经典作用,但雌激素β受体的具体作用及机制尚不明晰。通过对雌激素β受体的研究发现,其在性别分化、学习和记忆、情绪调控、内分泌,以及生殖行为中均具有重要作用。本文就雌激素β受体与疼痛相关的研究进展作一综述。  相似文献   

2.
白藜芦醇生物学活性研究进展   总被引:1,自引:0,他引:1  
白藜芦醇是一种植物抗毒素,主要存在于虎杖、葡萄及花生等有限的植物中,它具有对人体有益的生物学活性,如具有拮抗肿瘤作用、心血管保护作用、抗炎作用、抗病毒作用、神经保护作用、植物雌激素作用和对骨钙的影响等。  相似文献   

3.
雌激素神经保护作用机制:线粒体功能的调节   总被引:1,自引:0,他引:1  
大量研究表明雌激素具有神经保护作用,但其机制尚不清楚。近年来研究提示,雌激素的神经保护作用与线粒体有着密切联系。线粒体是细胞内能量和活性氧自由基(ROS)的主要来源,对细胞内信号转导、细胞存活与死亡调节等具有十分重要的影响。在生理和病理条件下,雌激素可多方面调节线粒体功能,包括影响ATP与ROS的生成、稳定线粒体膜电位、维护细胞内钙稳态,以及调节线粒体基因和蛋白表达等。本文主要从线粒体角度综述了雌激素神经保护作用及其机制。  相似文献   

4.
雌激素心血管作用的研究进展   总被引:7,自引:0,他引:7  
Wang S  He RR 《生理科学进展》2001,32(4):337-339
雌激素受体广泛分布于心血管系统,具有抗心律失常作用,抗动脉粥样硬化效应和舒血管效应,并可调控动脉压力感受器反射,雌激素通过基因组机制和非基因组机制发挥心血管保护效应。  相似文献   

5.
雌激素在中枢神经系统中的作用   总被引:22,自引:0,他引:22  
雌激素对中枢神经系统神经元有多种作用(包括电生理、神经营养和代谢等的作用)。近年来,随着对雌激素作用基因组机制和非基因组机制的研究,人们逐渐加深了其在神经功能方面作用 的认识。目前发现,雌激素在调节下丘脑GnRH神经元功能活动、诱导和维持海马树状棘突,以及保护神经元等诸多方面都发挥着重要作用。流行病学提示,雌激素可以预防绝经妇女患早老性痴呆病(Alzheimer‘sDisease,AD)对神经功能有保护作用,由此可见,雌激素除调节生殖功能活动外,对中枢神经系统还有着更为广泛的作用。  相似文献   

6.
植物雌激素的作用机制   总被引:5,自引:0,他引:5  
流行病学研究表明,膳食中摄入适量的植物雌激素尤其大豆及谷类食品者,患激素依赖型癌症如乳腺癌、前列腺癌以及骨质疏松的概率较低。因而,植物雌激素潜在的抗癌、抗氧化及对心血管和骨质的保护作用近年来备受人们的关注,但是目前关于植物雌激素作用的机制尚未完全阐明。该文介绍近年来有关植物雌激素作用机制方面的研究进展。  相似文献   

7.
雌激素替代疗法(estrogen replacement therapy,ERT)是治疗绝经后综合征的首选治疗方案,但是长期应用导致子宫内膜增生、乳腺癌等。选择性雌激素受体调节剂主要通过ER亚型、共调节子、靶启动子、雌激素受体相关受体等机制实现其组织选择性,在发挥骨骼、心血管保护作用的同时,减少了对乳腺及生殖系统的副作用。目前,选择性雌激素受体调节剂的种类、作用的组织特异性及其临床应用在医学界引起广泛关注,具有广阔的发展前景。  相似文献   

8.
植物雌激素的作用   总被引:3,自引:0,他引:3  
植物雌激素是一类具有雌激素活性的化合物,自然界来源广泛。该文介绍植物雌激素对肿瘤、心血管系统、神经系统和生殖系统等的作用。植物雌激素具有广阔的临床应用前景,但还需进一步研究,了解其副作用及作用机制。  相似文献   

9.
雌激素的非基因组调节模式在雌性生殖系统中广泛存在.雌激素通过基因组、非基因组及两种调节模式的整合在不同组织中行使多种生理功能.卵巢中雌激素能通过非基因组效应对卵细胞起到保护作用.子宫中雌激素对多种基因的表达都是通过非基因组模式.对雌激素非基因组效应的研究将有利于进一步了解雌激素的作用机制.  相似文献   

10.
神经营养因子(NTFs)是近几年神经科学研究的热点,研究显示它在神经系统中发挥独特的作用,尤其是神经生长因子(NGF)、脑源性神经营养因子(BDNF)在脑内功能及其表达调控方面具有重要作用。围绝经期妇女随着雌激素水平的降低会产生认知功能的减退,有研究发现去卵巢动物(OVX)雌激素水平降低可以导致某些NGF、BDNF的丢失。通过启动内源性NGF和BDNF的表达而实现对神经元的保护可能为雌激素替代治疗(ERT)脑保护作用的一种机制。本文就近几年的研究进展做一简要综述。  相似文献   

11.
Mounting evidences have suggested that 17beta-estradiol (E2) could have a neuroprotective action in the CNS. In the present study, we wanted to study whether this estrogen was able to protect cerebellar granule cells (CGCs) from apoptosis or excitotoxicity. Our results suggest that E2 has no anti-apoptotic effect in CGCs cultures. The lack of phosphoinositide 3-kinase/Akt pathway activation in CGCs cultures could be on the basis of the failure of estradiol to protect CGCs from potassium-deprivation and ceramide-mediated apoptosis. Moreover, E2 does not protect CGCs from glutamate-mediated death despite activating the extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway, which suggests that extracellular signal regulated kinase kinase/extracellular signal regulated kinase pathway activation is not sufficient to sustain an estrogen-mediated neuroprotective effect in CGCs cultures. By contrast, we found that the estrogen had a significant neuroprotective effect against hydrogen peroxide-mediated neuronal death. This effect was due to the antioxidant properties of the chemical structure of estradiol, as the biological inactive isomer 17alpha-estradiol was also able to reduce hydrogen peroxide-mediated neuronal death.  相似文献   

12.
Because estrogen plays important neurotrophic and neuroprotective roles in the brain by activating estrogen receptors (ERs), disruption of normal estrogen signaling can leave neurons vulnerable to a variety of insults, including β-amyloid peptide (Aβ). Aroclor1254 (A1254) belongs to the endocrine-disrupting chemical (EDC) polychlorinated biphenyls and has anti-estrogenic properties. In the present study, we evaluated the effect of A1254 on the protective activity of estrogen against Aβ toxicity in differentiated cholinergic SN56 cells. Aged Aβ25-35 causes apoptotic cell death in differentiated SN56 cells, and the cytotoxic evidences are effectively rescued by estrogen. We found that A1254 abolishes the neuroprotective activity of estrogen against Aβ toxicity, and attenuates the suppressive effect of estrogen on Aβ-induced tau phosphorylation and JNK activation. The effects of A1254 on the neuroprotective effects of estrogen in Aβ toxicity are very similar to the effects of the estrogen receptor antagonist ICI182,780. Thus, exposure to EDCs that have anti-estrogenic activity might interfere with normal estrogen-activated neuroprotective signaling events and leave neurons more vulnerable to dangerous stimuli. Our present results provide new understanding of the mechanisms contributing to the harmful effects of EDCs on the function and viability of neurons, and the possible relevance of EDCs in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease.  相似文献   

13.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor‐subtype present in the cell. Thus, ERα has a neuroprotective effect, while ERβ mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen‐induced apoptosis through ER‐β requires the expression of Fas‐ and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia‐secreted products induce the expression of FasL necessary to mediate estradiol–ERβ apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 64–78, 2000  相似文献   

14.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor-subtype present in the cell. Thus, ERalpha has a neuroprotective effect, while ERbeta mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen-induced apoptosis through ER-beta requires the expression of Fas- and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia-secreted products induce the expression of FasL necessary to mediate estradiol-ERbeta apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number.  相似文献   

15.
16.
17.
Several in vitro and in vivo studies have shown that estrogen has neuroprotective properties. The neuroprotective effects of estrogen are probably exerted through several mechanisms. It is established that estrogen can provide neuroprotection by actions that are independent of estrogen receptor activation. In addition, in several experimental models, activation of estrogen receptors appears to be indispensable for neuroprotection. This review focuses on neuroprotection mediated by estrogen receptors. The interaction of estrogen with growth factor receptor signaling to induce neuroprotection is discussed. Evidence is presented that estrogen receptors and insulin-like growth factor-I receptors interact in the promotion of neuronal survival and neuroprotection.  相似文献   

18.
19.
Within the last few years, there has been a growing interest in the neuroprotective effects of estrogen and the possible beneficial effects of estrogen in neurodegenerative diseases such as stroke, Alzheimer's disease, and Parkinson's disease. The concept of neuroprotective effects of estrogen in women remains controversial because these effects may vary with the timing of treatment. Research increasingly suggests that changes in estrogen levels during aging may increase risk for Alzheimer's disease, the most common type of dementia. This update reviews the newest information about estrogen and cognitive aging, including information regarding the role of bioavailable estrogen in older women and men.  相似文献   

20.
Epidemiological data from retrospective and case-control studies have indicated that estrogen replacement therapy (ERT) can decrease the risk of developing Alzheimer's disease. In addition, ERT has been found to promote cellular correlates of memory and to promote neuronal survival both in vivo and in vitro. Phytoestrogens have been proposed as potential alternatives to ERT. To determine whether phytoestrogens exert estrogen agonist effect in neural tissue, investigations of neuroprotective and neurotrophic efficacy of phytoestrogens were conducted. Six phytoestrogens, genistein, genistin, daidzein, daidzin, formononetin, and equol, were tested for their neuroprotective efficacy against two toxic insults, glutamate excitotoxicity and beta-amyloid(25-35). Neuronal membrane damage was quantitatively measured by lactate dehydrogenase (LDH) release, and neuronal mitochondrial viability was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid (MTT) assay. Results of these studies demonstrated that all phytoestrogens induced a modest but significant reduction in LDH release following exposure to glutamate and beta-amyloid(25-35). In contrast, none of phytoestrogens induced a significant increase in reduced MTT levels, which occurred in the presence of a full estrogen agonist, 17beta-estradiol. Analysis of the neurotrophic potential of genistein and daidzein, two phytoestrogens that exerted a significant reduction in LDH release, demonstrated that neither of these molecules promoted hippocampal neuron process outgrowth. Results of these analyses indicate that although phytoestrogens exert a neuroprotective effect at the plasma membrane, they do not sustain neuron mitochondrial viability nor do they induce cellular correlates of memory as neurite outgrowth and synaptogenesis are putative mechanisms of memory. Data derived from these investigations would predict that phytoestrogens could exert some neuroprotective effects analogous to that of antioxidants, but that these molecules are not functional equivalents to endogenously active 17beta-estradiol or to estrogen replacement formulations and, therefore, would raise the concern that they may not reduce the risk of Alzheimer's disease or sustain memory function in postmenopausal women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号