首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
Status of cryopreservation of embryos from domestic animals.   总被引:6,自引:0,他引:6  
The discovery of glycerol as an effective cryoprotectant for spermatozoa led to research on cryopreservation of embryos. The first successful offspring from frozen-thawed embryos were reported in the mouse and later in other laboratory animals. Subsequently, these techniques were applied to domestic animals. Research in cryopreservation techniques have included studies concerning the type and concentration of cryoprotectant, cooling and freezing rates, seeding and plunging temperatures, thawing temperatures and rates, and methods of cryoprotectant removal. To date, successful results based on pregnancy rates have been obtained with cryopreserved cow, sheep, goat, and horse embryos but no success has been reported in swine. Post-thaw embryo survival has been shown to be dependent on the initial embryo quality, developmental stage, and species. The freezing techniques most frequently used in research and by commercial companies are identified as "equilibrium" cryopreservation. In this technique the embryos are placed in a concentrated glycerol solution (1.4 M in PBS supplemented with BSA) at room temperature and the glycerol is allowed to equilibrate for a 20-min period. During the cooling process the straws are seeded (-4 to -7 degrees C) and cooling is continued at a rate of 0.3 to 0.5 degree C/min to -30 degrees C when bovine embryos may be plunged into LN2. Sheep embryos are successfully frozen with ethylene glycol (1.5 M) or DMSO (1.5 M) rather than with glycerol. Horse embryos have been frozen in 0.5 rather than 0.25 cc straws but with cooling rates and seeding and plunging temperatures similar to those used with bovine embryos. Swine embryos have shown a high sensitivity to temperature and cryoprotectants probably due to their high lipid content and a temperature decrease to 15 or 10 degrees C causes a dramatic increase in the percentage of degenerated embryos. However, a recent study has shown that hatched pig blastocysts survived exposure below 15 degrees C. Recent research has shown that embryos may also be frozen by a "nonequilibrium" method. This rapid freezing by vitrification consists of dehydration of the embryo at room temperature by a very highly concentrated vitrification media (3.5 to 4.0 M) and a very rapid freeze that avoids the formation of ice allowing the solution to change from a liquid to a glassy state. Vitrification solutions consist of combinations of sucrose, glycerol, and propylene glycol. With this technique, 50% pregnancy rates have been reported with the bovine blastocyst.  相似文献   

2.
Factors affecting the survival of mouse embryos cryopreserved by vitrification   总被引:16,自引:1,他引:16  
W F Rall 《Cryobiology》1987,24(5):387-402
Preimplantation stage mouse embryos have been used to examine the response of a simple multicellular system to cryopreservation by the complete vitrification of the suspension. Successful vitrification requires the use of a solution of cryoprotectants that is sufficiently concentrated to supercool and solidify into a glass at practicable cooling rates. Factors that influence the survival of embryos include the concentration and composition of the vitrification solution, the procedure used to equilibrate embryos in this solution, the cooling and warming conditions, and the procedure used to dilute embryos from the vitrification solution. High rates of survival are obtained when embryos are dehydrated prior to vitrification in solutions composed of saline plus multimolar concentrations of either mixtures of permeating cryoprotectants (e.g. dimethyl sulphoxide-acetamide-propylene glycol) or single permeating cryoprotectants (propylene glycol or glycerol). Full permeation of cryoprotectants into the cells is not necessary and may lead to chemical toxicity and osmotic injury. Partial permeation and osmotic shrinkage concentrates the endogenous cytoplasmic macromolecules and greatly increases the likelihood of intracellular vitrification. Vitrification is a practical approach for embryo cryopreservation and offers new opportunities to examine fundamental aspects of cryoprotection and cryoinjury in the absence of freezing.  相似文献   

3.
This study was designed to test the efficiency of recently developed vitrification technology followed by microscope-free thawing and transfer of sheep embryos. In a first set of experiments, in vivo derived embryos at the morula to blastocyst stage were frozen in an automated freezer in ethylene glycol, and after thawing and removal of cryoprotectants, were transferred to recipient ewes according to a standard protocol (control group). A second group of embryos were loaded into open-pulled straws (OPS) and plunged into liquid nitrogen after exposure at room temperature to the media: 10% glycerol (G) for 5 min, 10% G+20% ethylene glycol (EG) for 5 min, 25% G+25% EG for 30s; or 10% EG+10% DMSO for 3 min, 20% EG+20% DMSO+0.3M trehalose for 30s. The OPS were thawed by plunging into tubes containing 0.5M trehalose. After this rapid thawing, the embryos were directly transferred using OPS as the catheter for the transplantation process. In a second set of experiments, in vivo derived and in vitro produced expanded blastocysts were vitrified in OPS and then transferred as described above. The lambing rates recorded (59% for the conventionally cryopreserved in vivo derived embryos, 56% for the vitrified in vivo derived embryos, and 20% for the vitrified in vitro produced embryos), suggest the suitability of the vitrification technique for the transfer of embryos obtained both in vivo and in vitro. This simple technology gives rise to a high embryo survival rate and will no doubt have applications in rearing sheep or other small ruminants.  相似文献   

4.
The study was designed to evaluate the efficiency of a modified (sealed) open pulled straw (mOPS) method for cryopreserving rabbit embryos by vitrification or rapid freezing. An additional objective was to determine whether the mOPS method could cause the vitrification of a cryoprotectant solution generally used in rapid freezing procedures. Two consecutive experiments of in vitro and in vivo viability were performed. In Experiment 1, the in vitro viability of rabbit embryos at the morula, compacted morula, early blastocyst and blastocyst stages was assessed after exposure to a mixture of 25% glycerol and 25% ethylene glycol (25GLY:25EG: vitrification solution) or 4.5 M (approximately 25% EG) ethylene glycol and 0.25 M sucrose (25EG:SUC: rapid freezing solution). Embryos were loaded into standard straws or mOPS and plunged directly into liquid nitrogen. The mOPS consisted of standard straws that were heat-pulled, leaving a wide opening for the cotton plug and a narrow one for loading embryos by capillarity. The embryos were aspirated into the mOPS in a column positioned between two columns of cryoprotectant solution separated by air bubbles. The mOPS were then sealed with polyvinyl-alcohol (PVA) sealing powder. The vitrification 25GLY:25EG solution became vitrified both in standard straws and mOPS, whereas the rapid freezing 25EG:SUC solution crystallized in standard straws, but vitrified in mOPS. The total number of embryos cryopreserved was 1695. Embryos cryopreserved after exposure to each solution in mOPS showed higher rates (88.2%) of survival immediately after thawing and removal of the cryoprotectant than those cryopreserved in 0.25 ml standard straws (78.8%; P < 0.0001). After culture, the developmental stage of the cryopreserved embryos significantly affected the rates of development to the expanded blastocyst stage. Regardless of the cryoprotectant used, lower rates of in vitro development were obtained when the embryos were cryopreserved at the morula stage, and higher rates achieved using embryos at blastocyst stages. Based on the results of Experiment 1, the second experiment was performed on blastocysts using the mOPS method. Experiment 2 was designed to evaluate the in vivo viability of cryopreserved rabbit blastocysts loaded into mOPS after exposure to 25GLY:25EG or 25EG:SUC. Embryos cryopreserved in mOPS and 25GLY:25EG solution gave rise to rates of live offspring (51.7%) not significantly different to those achieved using fresh embryos (58.5%). In conclusion, the modified (sealed) OPS method allows vitrification of the cryoprotectant solution at a lower concentration of cryoprotectants than that generally used in vitrification procedures. Rabbit blastocysts cryopreserved using a 25GLY:25EG solution in mOPS showed a similar rate of in vivo development after thawing to that shown by fresh embryos.  相似文献   

5.
Osmotic characteristics of sheep and cattle embryos   总被引:1,自引:0,他引:1  
Ten minutes of exposure to increasing concentrations of sucrose caused a proportional decrease in the volume of sheep late morulae, their relative volume changed as a linear function of the reciprocal of the osmolality of the medium. Day 6 sheep and Day 7 cattle embryos responded to the addition of permeating cryoprotectants by an initial shrinkage which was followed by gradual reexpansion. After 1.25 min exposure the relative volumes of sheep and cattle embryos respectively were 20 and 25% smaller in glycerol than in ethylene glycol. The volumes of cattle and sheep embryos remained smaller in glycerol than in ethylene glycol up to the final observation at 30 min. The osmotic response of sheep late morulae to 2.0 M propylene glycol was intermediate between their response to 2.0 M glycerol and to 2.0 M ethylene glycol. These results indicate that Day 6 sheep and Day 7 cattle embryos are more permeable to ethylene glycol than to glycerol.  相似文献   

6.
Ding FH  Xiao ZZ  Li J 《Theriogenology》2007,68(5):702-708
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation.  相似文献   

7.
Two studies were conducted to evaluate the influence of cryoprotectant, cooling rate, container and cryopreservation procedure on the post-thaw viability of sheep embryos. In Study 1, late morula- to blastocyst-stage embryos were exposed to 1 of 10 cryoprotectant (1.5 M, glycerol vs propylene glycol)-plunge temperature treatments. Embryos were placed in glass ampules and cooled at 1 degrees C/min to -5 degrees C, seeded and further cooled at 0.3 degrees C/min to -15, -20, -25, -30 and -35 degrees C before rapid cooling by direct placement in liquid nitrogen (LN(2)). Post-thaw embryo viability was improved (P<0.01) when embryos were cooled to at least -30 degrees C before LN(2) plunging. Although there were no overt differences in embryo viability between cryoprotectant treatments (each resulted in live offspring after embryo transfer), there was a lower (P<0.01) incidence of zona pellucida damage using propylene glycol (4%) compared to glycerol (40%). In Study 2, embryos were equilibrated in 1.5 M propylene glycol or glycerol or a vitrification solution (VS3a). Embryos treated in propylene glycol or glycerol were divided into ampule or one-step((R)) straw treatments, cooled to -6 degrees C at 1 degrees C/min, seeded, cooled at 0.5 degrees C/min to -35 degrees C, held for 15 minutes and then transferred to LN(2). Embryos vitrified in the highly concentrated VS3a (6.5 M glycerol + 6% bovine serum albumin) were transferred from room air to LN(2) vapor, and then stored in LN(2). Propylene glycol- and glycerol-treated embryos in straws experienced lower (P<0.05) degeneration rates (27%) and yielded more (P<0.05) hatched blastocysts (73 and 60%, respectively) at 48 hours of culture and more (P<0.05) trophoblastic outgrowths (67 and 53%, respectively) after 1 week than vitrified embryos (47, 40 and 20%, respectively). In vitro development rate for VS3a-treated embryos was similar (P>0.10) to that of ampule controls, which had fewer (P<0.05) expanded blastocysts compared to similar straw treatments. Live offspring were produced from embryos cryopreserved by each straw treatment (propylene glycol, 3 of 7; glycerol, 1 of 7; VS3a, 2 of 7). In summary, freeze-preservation of sheep embryos was more effective in one-step straws than glass ampules and propylene glycol tended to be the optimum cryoprotectant. Furthermore, these findings demonstrate, for the first time, the biological competence of sheep embryos cryopreserved using the simple and rapid procedure of vitrification.  相似文献   

8.
Experiments were conducted to study the effect of cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propanediol (PROH), and glycerol at different concentrations (3.5, 4, 5, 6, and 7 M each with 0.5 M sucrose and 0.4% BSA in DPBS) on survival, in vitro maturation, in vitro fertilization, and post-fertilization development of vitrified-thawed immature buffalo oocytes. The COCs were harvested from the ovaries by aspirating the visible follicles. The recovery of post-thaw morphologically normal oocytes was lower in 3.5 and 4 M DMSO, EG, and PROH compared to 5, 6, and 7 M. In all the concentrations of glycerol, an overall lower numbers of oocytes recovered were normal compared to other cryoprotectants. Less number of oocytes reached metaphase-II (M-II) stage from the oocytes cryopreserved in any of the concentrations of DMSO, EG, PROH, and glycerol compared to fresh oocytes. Among the vitrified groups, highest maturation was obtained in 7 M solutions of all the cryoprotectants. The cleavage rates of oocytes vitrified in different concentrations of DMSO, EG, PROH, and glycerol were lower than that of the fresh oocytes. The cleavage rates were higher in oocytes cryopreserved in 6 and 7 M DMSO, EG, PROH, and glycerol compared with oocytes cryopreserved in other concentrations. However, the percentage of morula and blastocyst formation from the cleaved embryos did not vary in fresh oocytes and vitrified oocytes. In conclusion, this report describes the first successful production of buffalo blastocysts from immature oocytes cryopreserved by vitrification.  相似文献   

9.
Vitrification of mouse embryos in two cryoprotectant solutions   总被引:5,自引:0,他引:5  
The objective of this study was to compare the efficiency of 2 media on the vitrification of mouse compacted morulae, early blastocysts and expanded blastocysts after equilibration at room temperature of 4 degrees C. Embryos were equilibrated for 10 min in either 25% VS3 (Rall Equilibration Medium, REM) or 10% glycerol + 20% propylene glycol (Massip Equilibration Medium, MEM) in DPBS at 20 degrees C or 4 degrees C. For vitrification either 100% VS3 (Rall Vitrification Medium, RVM) or 25% glycerol + 25% propylene glycol (Massip Vitrification Medium, MVM) in DPBS was used. Embryos equilibrated at room temperature were loaded in 20 microL of vitrification media into 250 microL straws and then immediately (30 sec) plunged into liquid nitrogen (LN2). After equilibration at 4 degrees C the embryos were put into straws with 20 microL of precooled vitrification medium, and after 20 min at 4 degrees C they were plunged into LN2. Embryos from both groups were thawed in a 20 degrees C water bath for 20 sec, transferred to 1.0 M sucrose in DPBS for 5 min and then cultured for 24 to 48 h in Whitten's medium at 37 degrees C in 5% CO2 in air. In the groups of embryos prepared for vitrification at room temperature the survival rate of compact morulae vitrified in RVM was higher than those vitrified in MVM (65/70, 93% vs 49/74, 66%; P < 0.01). No difference was found in the survival rate of early blastocysts and expanded blastocysts vitrified in RVM or MVM (30/83, 36% vs 25/75, 33% and 4/66, 6% vs 4/76, 5%). No difference was found between the survival rate of compact morulae after equilibration with RVM or MVM at 4 degrees C (62/75, 83% vs 52/74, 70%). Both the early blastocysts and expanded blastocysts equilibrated at 4 degrees C MVM yielded a higher survival rate than RVM (28/74, 38% and 40/70, 57% vs 4/75, 5% and 4/77, 5%; P < 0.01). We conclude that, of the 3 developmental stages, compact morulae withstand the vitrification process best, and reduction of the temperature prior to plunging into LN2 is not required. A 10-fold increase in the survival rate of expanded blastocysts can be achieved using low temperature equilibration (4 degrees C) and MVM.  相似文献   

10.
The osmotic behavior of bovine blastocysts produced in vitro was filmed during exposure to and dilution of cryoprotectant solutions used for vitrification. The relationship between the changes in the diameter of embryos and their subsequent survival was assessed. Embryos collected on Day 6 and Day 7 postinsemination were exposed to 10% glycerol (GLY) for 5 min, 10% GLY + 20% ethylene glycol (EG) for 5 min, and 25% Gly + 25% EG for 30 s, before dilution in 0.85 M galactose and finally in embryo transfer freezing medium (ETF). Embryos that had a higher probability of survival behaved as perfect osmometers, shrinking, reexpanding, or swelling according to an identical pattern, whereas embryos that deviated from this standard usually did not survive. The initial embryo diameter, duration of shrinkage and expansion in 10% glycerol, duration of reexpansion in ETF, and final embryo diameter were clearly predictive of the ability to hatch after culture in vitro. On a given day postinsemination, larger blastocysts were more likely than smaller blastocysts to survive and hatch after exposure to cryoprotectants with or without vitrification.  相似文献   

11.
Weber PK  Youngs CR 《Theriogenology》1994,41(6):1291-1298
The objective of this study was to examine the potential toxicity of sucrose (Experiment 1) and of various cryoprotectants (Experiment 2) to porcine preimplantation embryos. In Experiment 1, 65 embryos, ranging from compact morulae to hatched blastocysts, were allocated within donor female across 5 concentrations of sucrose (0, 0.25, 0.50, 1.0, 2.0 M) to determine the highest concentration that would not inhibit subsequent embryo development. After a 48-h post-treatment culture period, the embryos were stained and cell nuclei were counted. The concentration of sucrose affected embryo development (P < 0.001) and embryo quality (P < 0.001). Embryos placed into 2.0 M sucrose exhibited poorer development and quality than embryos at the lower 4 concentrations, which were not different from one another. In Experiment 2, 182 embryos of the same developmental stages as in Experiment 1 were collected from 16 donors. Embryos were allotted within donor female to 2 of the 5 concentrations (10, 20, 30, 40, or 50%) of each of 3 cryoprotectants (ethylene glycol, propylene glycol, glycerol). After a 30-sec exposure to a cryoprotectant, the embryos were cultured and stained as in Experiment 1. As the concentration of an individual cryoprotectant increased beyond 30%, embryo development decreased. Embryos exposed to glycerol or propylene glycol exhibited poorer development than did embryos placed into ethylene glycol, especially at concentrations of 40% or higher.  相似文献   

12.
Bovine blastocysts were produced through maturation, fertilization, and development in vitro. For vitrification, solutions designated EFS, GFS, and PFS were prepared; these were 40% ethylene glycol, 40% glycerol, and 40% propylene glycol, respectively, diluted in modified phosphate-buffered saline (PBS) containing 30% Ficoll + 0.5 M sucrose. The embryos were exposed to the solutions in one step at room temperature, kept in the solutions for various times, vitrified in liquid nitrogen, and warmed rapidly. When the embryos were vitrified in EFS solution after 1 or 2 min exposure, the postwarming survival rate, assessed by the reexpansion of the blastocoel, was 74–77%. However, when the exposure time was extended to 3 min or longer, this rate dropped to 7–0%. This reduction was attributed to the toxicity of ethylene glycol. Of the embryos vitrified in GFS solution, 53% survived when they were cooled after 1 min exposure; as the duration of the exposure increased, the survival rate increased, reaching a peak (72%) at 4 min. The rate then decreased gradually with exposure time. In PFS solution, embryos surviving after vitrification were recovered only with 1 min exposure (33%), reflecting the high toxicity of propylene glycol. After vitrification in EFS or GFS solution, two embryos were nonsurgically transferred into each of 14 recipient animals. Of the 14 recipients, ten (71%) became pregnant; two resulted in early stillbirths, four recipients delivered twins (four alive and four stillborn), and two delivered single live calves, demonstrating the effectiveness of this simple vitrification method for the cryopreservation of in-vitro-produced bovine blastocysts. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Factorial experiments were carried out to examine the effects of equilibration time, precooling and developmental stage on the postthaw in vitro survival of vitrified mouse embryos. Eight-cell embryos, compacted morulae, or blastocysts were cryopreserved using vitrification Solution 1 (VS1; 10% glycerol + 20% propylene glycol), and vitrification Solution 2 (VS2; 25% glycerol + 25% propylene glycol) in phosphate buffered saline + 10% calf serum. Each embryo stage group was first equilibrated in VS1 for 5, 10 or 20 min and then exposed to either a precooled ( approximately 4 degrees C) or nonprecooled ( approximately 20 degrees C) VS2 in a 0.25-ml straw before they were plunged directly into liquid nitrogen. Results of this study showed an interaction between precooling, equilibration time and developmental stage which affect significantly post-thaw embryo survival (P< 0.05). High survival rates were obtained after 10 min equilibration in VS1 irrespective of the embryo developmental stage. Precooling of the VS2 significantly improved the survival mainly of blastocysts. However, eight-cell and morula-stage embryos also showed high survival rates when they were exposed to precooled VS2 after 5 min equilibration in VS1. It was further observed that morulae usually exhibit high survival rates, and vitrification conditions are more critical for early and advanced stage embryo development.  相似文献   

14.
The first successful cryopreservation of fish embryos was reported in the Japanese flounder by vitrification [Chen and Tian, Theriogenology, 63, 1207-1219, 2005]. Since very high concentrations of cryoprotectants are needed for vitrification and fish embryos have a large volume, Japanese flounder embryos must have low sensitivity to cryoprotectant toxicity and high permeability to water and cryoprotectants. So, we investigated the sensitivity and the permeability of Japanese flounder embryos. In addition, we assessed the survival of flounder embryos after vitrification with solutions containing methanol and propylene glycol, following Chen and Tian's report. The embryos were relatively insensitive to the toxicity of individual cryoprotectants at lower concentrations, especially methanol and propylene glycol as their report. Although their permeability to water and cryoprotectants could not be measured from volume changes in cryoprotectant solutions, the embryos appeared to be permeable to methanol but less permeable to DMSO, ethylene glycol, and propylene glycol. Although vitrification solutions containing methanol and propylene glycol, which were used in Chen and Tian's report, were toxic to embryos, a small proportion of embryos did survived. However, when vitrified with the vitrification solutions, no embryos survived after warming. The embryos became opaque during cooling with liquid nitrogen, indicating the formation of intracellular ice during cooling. When embryos had been kept in vitrification solutions for 60 min after being treated with the vitrification solution, some remained transparent during cooling, but became opaque during warming. This suggests that dehydration and/or permeation by cryoprotectants were insufficient for vitrification of the embryos even after they had been over-treated with the vitrification solutions. Thus, Chen and Tian's cryopreservation method lacks general application to Japanese flounder embryos.  相似文献   

15.
Experiments were conducted to develop a simple rapid-freezing protocol for mature mouse oocytes that would yield a high proportion of oocytes with developmental potential. The effects of concentration (3.5, 4.5 and 6.0 M dimethyl sulfoxide (DMSO) all with 0.5 M sucrose) and the duration of exposure (2.5 min vs 45 sec) of oocytes to the cryoprotectant and its extraction after thawing in 2, 3 or 4 steps of descending sucrose concentration were studied. The most effective of the rapid-freezing and thawing protocols (4.5 M DMSO; 45 sec exposure and 3-step thawing) was compared to slow freezing protocols using 1.5 M DMSO and 1.0 M 1,2 propanediol as cryoprotectants. The DMSO concentrations had an effect on survival, fertilization and embryo development using short (45 sec) but not long (2.5 min) exposure. The rate of morphological oocyte survival was significantly higher using 4.5 M DMSO than 3.5 or 6.0 M (92% vs 82 and 73%, respectively). The development of fertilized embryos to blastocysts was also significantly higher at 4.5 M than at 3.5 or 6.0 M (68% vs 42 and 53%, respectively). The extraction of cryoprotectant in 3 or 4 steps of descending sucrose concentration resulted in higher survival (P < 0.01) and fertilization than in 2 steps. The best survival, fertilization and development was achieved with the 3-step procedure. Optimal combinations of conditions were 4.5 M DMSO at 45 sec prefreeze exposure and 3-step extraction of the cryoprotectant. Oocytes frozen by conventional methods had a survival, fertilization and development to blastocyst rate significantly lower than those frozen under the optimal rapid conditions. Thus rapid freezing of mature mouse oocytes with 4.5 M DMSO + 0.5 M sucrose and short prefreeze exposure is effective and has the additional advantage of being less time-consuming than slow freezing methods.  相似文献   

16.
Until recently, attempts to preserve porcine embryos have been unsuccessful. Vitrification has been developed as a method of cryopreserving mammalian embryos by avoiding ice crystal formation, assuring a cryopreserved glass state during storage in liquid nitrogen. Vitrification may be a useful method of overcoming the deleterious effects of chilling injury when pig embryos are cryopreserved using conventional slow freezing procedures. In this study, we applied vitrification procedures for rodent and/or bovine embryos to cryopreserve porcine embryos. Following warming, survival was defined as normal development of embryos in culture, namely the formation or reexpansion of the blastocoelic cavity. Experiment 1 tested the relative toxicity of 3 vitrification procedures on Day-5, 6 and 7 porcine embryos. Embryos equilibrated in vitrification solution (VS3a) continued to develop in vitro at rates comparable to that of untreated control embryos. Experiment 2 was designed to evaluate embryonic development following cryopreservation by vitrification in VS3a. Day-5 porcine embryos did not survive cryopreservation while Day-6 and Day-7 embryos survived and continued development in vitro. In Experiment 3, we evaluated a period of culture prior to vitrification and its effect on cryosurvivability of porcine embryos. A 3-h culture period prior to vitrification had no effect on cryosurvivability over that of freshly recovered, immediately vitrified embryos. These studies indicate, for the first time, that porcine embryos can be successfully cryopreserved by vitrification based on morphology and subsequent development in vitro. However, survival following cryopreservation appears to depend upon embryonic age or stage of development.  相似文献   

17.
Saito N  Imai K  Tomizawa M 《Theriogenology》1994,41(5):1053-1060
We investigated the effect of addition of sugars to a vitrification solution on the survival rate of bovine blastocysts produced in vitro. In vitro-matured (IVM) and in vitro-fertilized (IVF) bovine Day-6 to Day-8 bovine blastocysts were classified into 3 developmental stages: early blastocysts, blastocysts and expanded blastocysts. The blastocysts were cryopreserved in 1 of 3 vitrification solutions: 1) 25% glycerol25% ethylene glycol (GE); 2) 20% glycerol20% ethylene glycol3/4 M sucrose (GES); and 3) 20% glycerol20% ethylene glycol3/8 M sucrose3/8 M dextrose (GESD). The basic solution was Dulbecco's PBS supplemented with 20% of fetal calf serum. Embryos were exposed to each vitrification solution in 3 steps, and after loading into 0.25-ml straws, were plunged into liquid nitrogen. After warming in water bath at 20 degrees C, cryoprotectants were diluted in 1/2 M and 1/4 M sucrose each for 5 min. Equilibration and dilution procedure except warming were conducted at room temperature (23 to 27 degrees C). After dilution, the embryos were cultured in Ham's F10 medium0.1 mM beta-mercaptoethanol20% fetal calf serum. Survival rates of embryos at 48 h of incubation of each of the 3 developmental stages (early blastocysts, blastocysts and expanded blastocysts) exposed to the 3 types of the vitrification solutions (GE, GES and GESD) were 23.5, 33.3, 65.8% (early blastocysts, blastocysts and expanded blastocysts respectively) in GE, 55.6, 71.9, 90.5% in GES and 84.6, 83.3, 95.8% in GESD respectively. These results indicate that a mixture of 25% glycerol25% ethylene glycol is not suitable for vitrification of early bovine blastocysts; however, addition of sugars to the solution significantly (P<0.01) improved the survival rate of the vitrified blastocysts, independently of their stage of development.  相似文献   

18.
The survival of ovine embryos (morulae and blastocysts) either frozen by a conventional method or vitrified was investigated in culture. In Experiment I, embryos were vitrified using a solution containing 25% propylene glycol and 25% glycerol. A group of embryos (simulated control) was processed without freezing to evaluate the toxicity of the vitrification solution. In Experiment II, embryos were exposed to a solution of PBS containing 10% glycerol and 0.25 M sucrose placed horizontally in a programmable freezer. Automatic seeding was applied at -7 degrees C in 2 positions on straws and cooled at -0.3 degrees C/min to -25 degrees C and then stored in liquid nitrogen. In vitro development rates of vitrified embryos were 12% (morulae) and 19% (blastocysts). Simulated embryos showed a higher rate of survival than embryos cryopreserved by vitrification (67 and 63%, morulae and blastocysts respectively). In conventional cooling, the blastocysts showed the highest viability percentage (67%) of all the experimental groups but these values decreased significantly in morulae (31%). Differences in temperature between straws placed in distinct positions in the freezing chamber and thermic deviation were observed when automatic seeding was applied. Embryo viability differed from 51 to 75% according the relative position of the embryos within the chamber. Survival was higher when automatic seeding was applied on the meniscus of the embryo column versus the central point of this column (65 vs 21%). The damage of both cryopreservation methods on zona pellucida integrity (27 and 35% in vitrified and conventionally frozen embryos, respectively) had no effect on the in vitro survival.  相似文献   

19.
Loss of biodiversity among amphibians is a current concern. Our hypothesis is that the embryos of amphibian species at risk of extinction could be cryopreserved by vitrification, using methods which have proved successful with fish oocyte. To test this hypothesis, samples of four cryoprotectants - methanol (MeOH), dimethyl sulphoxide (Me2SO), propylene glycol (PG) and polyethylene glycol (PEG), some singly, some in combination, were plunged in liquid nitrogen for 5 min to find the best solution for vitrification. To find the least toxic of these solutions, blastulae and stage G17 embryos of Bufotes Viridis, a typical amphibian, were exposed to solutions at different concentrations (0.5–10 M) for different lengths of time (15–30 min), with and without their normal protective jelly coats. In each case the number of survivors, which reached stage G25 was counted. Finally a series of embryos was vitrified in liquid nitrogen using the most efficient and least toxic cryoprotectants.Propylene glycol had the best vitrification characteristics, but MeOH vitrified at higher concentrations. The optimum regime, with the least toxic ctyoprotectants, consisted of 1M Me2SO for 15 min and a combination of 15% PEG(w/v) + 3M PG + 2M Me2SO for 3 min, with the jelly coat intact, followed by vitrification. This gave a survival percentage of 87.6% immediately after vitrification. Methods designed for cryopreservation of fish embryos make a good starting point for cryopreservation of the embryos of amphibian.  相似文献   

20.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号