首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99-105.88?μM and the concentration of proteins was fixed at 5.0?μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to F?ster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV-Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA-ergosterol and HSA-ergosterol systems were calculated by the van't Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A).  相似文献   

2.
The binding of bovine serum albumin (BSA) to ethambutol (EMB) was investigated using spectroscopic methods, viz., fluorescence, Fourier transform infrared (FTIR), ultraviolet (UV)/vis absorption and cyclic voltammetry techniques. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of serum albumin by EMB is static, which was also confirmed by lifetime measurements. The number of binding sites, n, and binding constant, K, were obtained at various temperatures. The distance, r, between EMB and the protein was evaluated according to the Förster energy transfer theory. Based on displacement experiments using site probes, viz., warfarin, ibuprofen and digitoxin, the site of binding of EMB in BSA was proposed to be Sudlow's site I. The effect of EMB on the conformation of BSA was analyzed by using synchronous fluorescence spectra (SFS) and 3D fluorescence spectra. The results of fluorescence, UV/vis absorption and FTIR spectra showed that the conformation of BSA was changed in the presence of EMB. The thermodynamic parameters including enthalpy change (ΔH0), entropy change (ΔS0) and free energy change (ΔG0) for BSA–EMB were calculated according to the van't Hoff equation and are discussed.  相似文献   

3.
The interaction between ribavirin (RIB) with bovine serum albumin (BSA) has been investigated by fluorescence quenching technique in combination with UV–vis absorption and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by RIB was found to be a result of the formation of RIB–BSA complex. The binding constants and the number of binding sites were calculated at three different temperatures. The values of thermodynamic parameters ?H, ?S, ?G at different temperatures indicate that hydrophobic and hydrogen bonds played important roles for RIB–BSA association. The binding distance r was obtained according to the theory of FÖrster’s non–radiation energy transfer. The displacement experiments was performed for identifying the location of the binding site of RIB on BSA. The effects of common ions on the binding constant of RIB and BSA were also examined. Finally, the conformational changes of BSA in the presence of RIB were also analyzed by CD spectra and Synchronous fluorescence spectra.  相似文献   

4.
Shi XY  Cao H  Ren FL  Xu M 《化学与生物多样性》2007,4(12):2780-2790
The interaction between bovine serum albumin (BSA) and tinidazole (Tindamax; 1) in aqueous solution was investigated in detail by means of UV/VIS and fluorescence spectroscopy, as well as through resonance light-scattering (RLS) spectroscopy. The apparent binding constant and number of binding sites were determined at three different temperatures, as well as the average binding distances between 1 and the nearest amino acid residue(s) of BSA, as analyzed by means of F?rster's theory of non-radiation energy transfer. Compound 1 was found to quench the inner fluorescence of BSA by forming a tight 1:1 aggregate, based on both static quenching and non-radiation energy transfer. The entropy change upon complexation was positive, and the enthalpy change was negative, indicating that the observed spontaneous binding is mainly driven by electrostatic interactions.  相似文献   

5.
The mechanism of binding of vitamin K(3) (VK(3)) with bovine serum albumin (BSA) was investigated by fluorescence, absorption and circular dichroism (CD) techniques under physiological conditions. The analysis of fluorescence data indicated the presence of static quenching mechanism in the binding. Various binding parameters have been evaluated. Thermodynamic parameters, the standard enthalpy change, DeltaH(0) and the standard entropy change, DeltaS(0) were observed to be -164.09 kJ mol(-1) and -465.08 J mol(-1)K, respectively. The quantitative analysis of CD spectra confirmed the change in secondary structure of the protein upon interaction with VK(3). The binding average distance, r between the donor (BSA) and acceptor (VK(3)) was determined based on the F?rster's theory and it was found to be 3.3 nm. The effects of toxic ions and common ions on VK(3)-BSA system were also investigated.  相似文献   

6.
The interaction between pyridoxine hydrochloride (VB6) and bovine serum albumin (BSA) were studied by spectroscopic methods including fluorescence spectroscopy and UV-visible absorption spectra. The quenching mechanism of fluorescence of BSA by VB6 was discussed. The number of binding sites n and observed binding constant K(b) was measured by fluorescence quenching method. The thermodynamic parameters DeltaH(theta), DeltaG(theta), DeltaS(theta) at different temperatures were calculated and the results indicate the binding reaction is mainly entropy-driven and hydrophobic interaction played major role in the reaction. The distance r between donor (BSA) and acceptor (VB6) was obtained according to FOrster theory of non-radiation energy transfer. Synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of BSA molecules with addition of VB6, the result indicates that the secondary structure of BSA molecules is changed in the presence of VB6.  相似文献   

7.
A coordination compound of 5, 7-dihydrox-4'-methoxyisoflavone and selenium was synthesized and its structure was identified by IR, LC-MS and (1)H-NMR. Its biochemical effects were investigated using bovine serum albumin (BSA) as a target protein molecule, in which process three-dimensional (3D) fluorescence spectra, ultraviolet spectra, circular dichroism (CD) spectra and fluorescence probe techniques were employed. The interaction of SEIF and BSA was discussed by fluorescence quenching method and F?rster non-radiation energy transfer theory. The thermodynamic parameters ΔH (θ), ΔG (θ), ΔS (θ) at different temperatures were calculated according to Van't Hoff isobaric equation and the results indicated the interaction was an exothermic as well as a spontaneous process. The binding site was explored by fluorescence probe method using warfarin and ibuprofen as markers. Intramolecular forces which are responsible for maintaining the binding were mainly hydrogen bond and van der Waals power. The average distance from the tryptophan residue in domain II of BSA (donor) to SEIF (acceptor) is 3.57 nm at body temperature. The conformation changes of BSA were investigated by 3D fluorescence and CD spectra.  相似文献   

8.
Ju P  Fan H  Liu T  Cui L  Ai S  Wu X 《Biological trace element research》2011,144(1-3):1405-1418
The interaction between cuprous oxide (Cu(2)O) nanocubes and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, Cu(2)O could effectively quench the intrinsic fluorescence of BSA via static quenching. The apparent binding constant (K(A)) was 3.23, 1.91, and 1.20?×?10(4) M(-1) at 298, 304, and 310 K, respectively, and the number of binding sites was 1.05. According to the Van't Hoff equation, the thermodynamic parameters (ΔH° = -63.39 kJ mol(-1), ΔS° = -126.45 J?mol(-1) K(-1)) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-Cu(2)O complex. Besides, the average binding distance (r(0)?= 2.76 nm) and the critical energy transfer distance (R(0) = 2.35 nm) between Cu(2)O and BSA were also evaluated according to F?rster's non-radioactive energy transfer theory. Furthermore, UV-visible and circular dichroism results showed that the addition of Cu(2)O changed the secondary structure of BSA and led to a decrease in α-helix. All results showed that BSA underwent substantial conformational changes induced by Cu(2)O, which can be very helpful in the study of nanomaterials in the application of biomaterials.  相似文献   

9.
We investigated the interaction of two derivatives of bis (indolyl) methane with bovine serum albumin (BSA) using spectroscopic and molecular docking calculations. Fluorescence quenching measurements revealed that the quenching mechanism was static. F?rster energy transfer measurements, synchronous fluorescence spectroscopy and docking studies demonstrated that both bis(indolyl)methanes bound to the Trp residues of BSA. The docking study confirmed that both bis(indolyl)methanes form hydrogen bonds and van der Waals interactions with BSA. Our molecular docking study indicated that the compounds are located within the binding pocket of subdomains IIB and IB of BSA. Fourier transform infrared spectroscopy demonstrated that both bis(indolyl)methane derivatives can interact with BSA and can affect the secondary structure of BSA.  相似文献   

10.
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster’s non-radiative energy transfer theory. The results of UV–Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.  相似文献   

11.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The binding of a cell nucleus stain, hematoxylin (HTL), to bovine serum albumin (BSA) was studied by spectroscopy including fluorescence spectra, UV–Visible absorption, circular dichroism (CD) spectra, synchronous and three-dimensional fluorescence spectra. The results indicated that the binding had led to static fluorescence quenching, with non-radiation energy transfer happening within single molecule. The observed binding constant was calculated to be 105.588 l mol?1 at 311 K and one binding site had formed. The thermodynamic parameters of the interaction complied with ΔG θ < 0, ΔH θ < 0, ΔS θ < 0 and the results indicate that hydrogen bonds played major role in the reaction. The distance r between donor (BSA) and acceptor (HTL) was obtained according to the Förster theory of non-radiation energy transfer. The structural change of BSA molecules with addition of HTL was analyzed and the optimized geometry of HTL–BSA was investigated by fluorescence probe method.  相似文献   

13.
The interactions between human serum albumin (HSA) and fluphenazine (FPZ) in the presence or absence of rutin or quercetin were studied by fluorescence, absorption and circular dichroism (CD) spectroscopy and molecular modeling. The results showed that the fluorescence quenching mechanism was static quenching by the formation of an HSA–FPZ complex. Entropy change (ΔS 0) and enthalpy change (ΔH 0) values were 68.42 J/(mol? K) and ?4.637 kJ/mol, respectively, which indicated that hydrophobic interactions and hydrogen bonds played major roles in the acting forces. The interaction process was spontaneous because the Gibbs free energy change (ΔG 0) values were negative. The results of competitive experiments demonstrated that FPZ was mainly located within HSA site I (sub‐domain IIA). Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters and competition experiments. Competitive binding to HSA between flavonoids and FPZ decreased the association constants and increased the binding distances of FPZ binding to HSA. The results of absorption, synchronous fluorescence, three‐dimensional fluorescence, and CD spectra showed that the binding of FPZ to HSA caused conformational changes in HSA and simultaneous effects of FPZ and flavonoids induced further HSA conformational changes.  相似文献   

14.
The binding of 5-iodouridine with human serum albumin was investigated under the simulative physiological conditions. The fluorescence spectra in combination with UV absorption and modeling method were used in the present work. A strong fluorescence quenching reaction of 5-iodouridine to HSA was observed and the quenching mechanism was suggested as static quenching procedure. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated. It showed that the hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the result of modeling study. The binding distance between 5-iodouridine and HSA was calculated on the basis of the theory of Föster energy transfer. The effects of other ions on the binding constants were also discussed. Synchronous fluorescence spectroscopy (SFS) technique were successfully applied to determine protein in the biological samples.  相似文献   

15.
The interactions of dihydroartemisinin (DHA) and artemisinin (ART) with bovine serum albumin (BSA) have been investigated using fluorescence, UV/vis absorption and Fourier transform infrared (FTIR) spectra under simulated physiological conditions. The binding characteristics of DHA/ART and BSA were determined by fluorescence emission and resonance light scattering (RLS) spectra. The quenching mechanism between BSA and DHA/ART is static. The binding constants and binding sites of DHA/ART–BSA systems were calculated at different temperatures (293, 298, 304 and 310 K). According to Förster non‐radiative energy transfer theory, the binding distance of BSA to DHA/ART was calculated to be 1.54/1.65 nm. The effect of DHA/ART on the secondary structure of BSA was analyzed using UV/vis absorption, FTIR, synchronous fluorescence and 3D fluorescence spectra. In addition, the effects of common ions on the binding constants of BSA–DHA and BSA–ART systems were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern–Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA–FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT‐IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The characteristics of the interaction between reserpine and bovine serum albumin (BSA) were studied by fluorescence, UV-vis absorption and Fourier transform infrared (FT-IR) spectroscopy. Spectroscopic analysis revealed that fluorescence quenching of BSA by reserpine was through a static quenching procedure. The binding constant K(A) of reserpine with BSA at 293, 301 and 309 K was 1.63, 1.78 and 2.35 x 10(5) moL(-1) L respectively, which indicated degree of binding force between reserpine and BSA. There was one binding site between reserpine and BSA. The entropy and enthalpy changes were positive, indicating that interaction of reserpine and BSA was driven mainly by hydrophobic forces. The average binding distance between the donor (BSA) and the acceptor (reserpine) was about 3.84 nm based on the Forster non-radiation energy transfer theory. Results of synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of BSA were changed by the binding of reserpine. The results may provide important insights into the physiological activity of reserpine.  相似文献   

18.
The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance F?rster-type energy transfer formalism.  相似文献   

19.
The interaction between bovine serum albumin (BSA) and benzidine (BD) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra and UV–Vis spectroscopy, as well as resonance light scattering spectroscopy (RLS). It was proved from fluorescence spectra that the fluorescence quenching of BSA by BD was a result of the formation of BD–BSA complex, and the binding constants (K a) were determined according to the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?34.11 kJ mol?1 and ?25.89 J mol?1 K?1, respectively, which implied that van der Waals force and hydrogen bond played predominant roles in the binding process. The addition of increasing BD to BSA solution caused the gradual enhancement in RLS intensity, exhibiting the forming of the aggregate. Moreover, the competitive experiments of site markers suggested that the binding site of BD to BSA was located in the region of subdomain IIA (sudlow site I). The distance (r) between the donor (BSA) and the acceptor (BD) was 4.44 nm based on the Förster theory of non–radioactive energy transfer. The results of synchronous fluorescence and CD spectra demonstrated the microenvironment and the secondary conformation of BSA were changed.  相似文献   

20.
We present here a systematic investigation on the interaction between a water‐soluble alloyed semiconductor quantum dot and bovine serum albumin using various spectroscopic techniques i.e. fluorescence quenching, resonance light scattering and synchronous fluorescence spectroscopy. The analysis of fluorescence spectrum and fluorescence intensity indicates that the intrinsic fluorescence of bovine serum albumin (BSA) gets quenched by both static and dynamic quenching mechanism. The Stern‐Volmer quenching constants, energy transfer efficiency parameters, binding parameters and corresponding thermodynamic parameters (ΔH0, ΔS0 and ΔG0) have been evaluated by using van 't Hoff equation at different temperatures. A positive entropy change with a positive enthalpy change was observed suggesting that the binding process was an entropy‐driven, endothermic process associated with the hydrophobic effect. The intermolecular distance (r) between donor (BSA) and acceptor (CdSeS/ZnS quantum dots) was estimated according to Förster's theory of non‐radiative energy transfer. The synchronous fluorescence spectra revealed a blue shift in the emission maxima of tryptophan which is indicative of increasing hydrophobicity. Negative ΔG0 values implied that the binding process was spontaneous. It was found that hydrophobic forces played a role in the quenching process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号