首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

2.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

3.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

4.
The effects of extracellular anions (10-150 mM, added as Na salts to normal growth medium) on the growth of Chinese hamster V-79 cells were examined. Additions of NaCl and NaNO3 at concentrations greater than 60 mM reduced the growth rate dose-dependently. Several other anions also inhibited cell growth in the decreasing order of potency, SCN- greater than NO2- greater than NO3- greater than Br- greater than Cl- greater than gluconate- glutamate- greater than Mes-. When the added anions were removed, the growth rate was restored to the control rate. Cell survival was markedly reduced by the addition of SCN-, but was less affected by other anions (Cl-,NO3- and NO2-) of comparable potency. The respective syntheses of cellular DNA and protein, as estimated from the incorporation of [3H]-thymidine and [14C]leucine, also decreased with the increase in the concentration (60-120 mM) of anions added, the order of potency being SCN- greater than NO2- greater than NO3- greater than Cl-. After anion-treatment, the cellular Na+ concentration increased and the cellular Cl- concentration decreased in the order of SCN- greater than NO2- greater than NO3-, Cl-, but, the cellular K+ concentration did not change significantly. These data suggest that changes in extracellular anions affect cell growth and survival, probably through changes in the intracellular Na+ or Cl- concentration and in the rates of protein and/or DNA synthesis.  相似文献   

5.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

6.
Modulation of gastric H+,K+-transporting ATPase function by sodium   总被引:3,自引:0,他引:3  
T K Ray  J Nandi 《FEBS letters》1985,185(1):24-28
Gastric H+,K+-ATPase activity is not affected by Na+ at pH 7.0 but is significantly stimulated by Na+ at pH 8.5. For the stimulation at the latter pH, the presence of both Na+ and K+ were essential. Contrary the H+,K+-ATPase, the associated K+-pNPPase was inhibited by Na+ at both pH values. Sodium competes with K+ for the K+-pNPPase reaction. Also, unlike the H+, K+-ATPase activity the ATPase-mediated transport of H+ within the gastric microsomal vesicles was inhibited by Na+. For the latter event only the extravesicular and not the intravesicular Na+ was effective. The data suggest that the K+-pNPPase activity does not represent the phosphatase step of the H+,K+-ATPase reaction. In addition, the observed inhibition of vesicular H+ uptake by Na+ appears to be due to the displacement by Na+ of a cytosolic (extravesicular) H+ site responsible for the vectorial translocation of H+.  相似文献   

7.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

8.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

9.
H Inada  H Shindo  M Tawata  T Onaya 《Life sciences》1999,65(13):1413-1422
Deficiencies in cellular cyclic AMP (cAMP) and nitric oxide (NO) production are thought to be involved in the pathogenesis of diabetic neuropathy. We used a human neuroblastoma cell line, SH-SY5Y, to investigate the effect of cilostazol, a specific cAMP phosphodiesterase inhibitor, on NO production and Na+, K+-ATPase activity. SH-SY5Y cells were cultured under 5 or 50 mM glucose for 5-6 days, the cells were then exposed to cilostazol or other chemicals and nitrite, cAMP and Na+, K+-ATPase activity were measured. In cells grown in 50 mM glucose, cilostazol was observed to increase significantly both NO production and cellular cAMP accumulation in a time- and dose-dependent manner. Cilostazol also significantly recovered reduced levels of protein kinase A activity (PKA) in 50 mM glucose. Furthermore, a PKA inhibitor, H-89 significantly suppressed the increase in NO production stimulated by cilostazol, suggesting that cilostazol stimulates NO production by activating PKA. Cilostazol did not affect either sorbitol or myo-inositol concentrations. Dexamethasone, which is known to induce inducible NO synthase, had no effect on NO production stimulated by cilostazol, suggesting that cilostazol stimulates NO production catalyzed by neuronal constitutive NO synthase (ncNOS) in SH-SY5Y cells. L-arginine, which is an NO agonist enhanced Na+, K+-ATPase activity in cells grown in 50 mM glucose, NG-nitro-L-arginine methyl ester (L-NAME), which is an NOS inhibitor inhibited basal Na+, K+-ATPase activity in 5 mM glucose and suppressed the increased enzyme activity induced by cilostazol in 50 mM glucose. The above results confirmed our previous observation that NO regulates Na+, K+-ATPase activity in SH-SY5Y cells and suggest that cilostazol increases Na+, K+-ATPase activity, at least in part, by stimulating NO production. The present results also suggest that cilostazol has a beneficial effect on diabetic neuropathy by improving Na+, K+-ATPase activity via directly increasing cAMP and NO production in nerves.  相似文献   

10.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

11.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

12.
The effects of salt concentration gradient (inside to outside) on the lipid peroxidation of porcine intestinal brush-border membrane vesicles have been studied and several interesting features of the peroxidation have been elucidated. The addition of dithiothreitol and Fe2+ is far more effective in induction of the lipid peroxidation than any of the other metal ion species tested (Fe3+, Cu2+, Ni2+, Zn2+ and Cr3+). The peroxidation rate of the membrane vesicles induced by dithiothreitol plus Fe2+ was sensitive for the incubation temperature and was increased with increase of the temperature. Imposition of an inward salt concentration gradient on the membrane vesicles preloaded with 300 mM mannitol by addition of 100 mM chloride of K+, Na+, Li+, Rb+, NH4+ or choline to medium produces a very large reduction of the lipid peroxidation induced by dithiothreitol plus Fe2+. The membrane peroxidation is depressed more with the mannitol (300 mM)-preloaded vesicles than with the K2SO4 (100 mM)-preloaded vesicles when they are incubated in medium containing 20-100 mM of K2SO4. Addition of membrane-permeant anions such as SCN- and I-, but not addition of NO3-, to incubation medium has been found to decrease markedly the lipid peroxidation of the mannitol-preloaded vesicles. From these results it is suggested that the lipid peroxidation of the brush-border membranes by addition of dithiothreitol plus Fe2+ is sensitively changed with change in ionic strength.  相似文献   

13.
The effects of ethanol on the gastric H+,K+-ATPase activity and the degree of mobility of various microsomal phospholipids were assessed using 31P and 1H NMR. This illuminated the role of lipid-protein association in the function of pig gastric microsomes. Treatment of gastric microsomes with 15% ethanol for 1 min at 37 degrees C inactivated the H+,K+-ATPase activity, which could largely be reconstituted by supplementation with phosphatidylcholine isolated from the gastric microsomes. Under similar conditions, the 1H NMR profile of the microsomal +N(CH3)3 choline moiety showed dramatic enhancement of peak intensity as well as a break point at 25 degrees C which was restored to the untreated control value after reconstitution. This break, together with the dramatic enhancement in the overall lipid profile, compared to the control and reconstituted microsomes, suggested a greater degree of freedom of movement of the microsomal lipids following ethanol perturbation. The data demonstrate the unique ability that a combined approach using 31P and 1H NMR holds as a noninvasive probe to study the structure-function relationship of biomembranes.  相似文献   

14.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

15.
Solubilization and reconstitution of the gastric H,K-ATPase   总被引:3,自引:0,他引:3  
Proteoliposomes containing the hog gastric H+,K+-ATPase were prepared from cholate and n-octyl glucoside extracts of native microsomes. Experiments were presented which show reconstitution-dependent selective purification of a 94-kDa peptide capable of Rb+/Rb+ exchange and active H+ transport. The absence of selective enrichment of residual protein contamination in this material suggests but does not prove that those transport reactions are attributable only to the 94-kDa peptide. Transport demonstrated inhibitor sensitivity and cation specificity comparable to the microsomal gastric ATPase. In K2SO4 media the H+ transport reaction was protonophore insensitive and correlated with MgATP-dependent 86Rb+ extrusion. This and other evidence suggested that active transport occurs via electroneutral H+in for K+out exchange. 86Rb+ exchange (uptake) in the proteoliposomes demonstrated both saturable and nonsaturable components. At a K0.5 = 1.5 mM, saturable 86Rb+ uptake accounted for about 90% of Rb+ influx. The vanadate-sensitive cation exchange indicated that the ATPase was reconstituted asymmetrically into the proteoliposomes (70% cis-/30% trans-vanadate site). 86Rb+ exchange was inhibited by ATP and stimulated about 2-fold by low Mg2+ and 5 mM phosphate. These ligand effects and the demonstration of comparable rates of passive exchange and active Rb+ efflux suggest that passive K+ exchange is not severely limited by a K+-occluded enzyme form in the H,K-ATPase. A model compatible with this hypothesis is suggested.  相似文献   

16.
An endogenous activator capable of stimulating the gastric H+,K+-ATPase activity has been purified to homogeneity from dog and pig gastric cells and found to be a dimer of two identical 40-kDa subunits in the active state. Identical nature of the activator monomers was revealed by the detection of lysine as the sole N-terminal amino acid. The activator from one species can stimulate the H+,K+-ATPase from another species and vice versa. Such cross-activation is consistent with the striking similarities in the amino acid composition between the two species, suggesting considerable homology in the activator molecules from different species. The activator exhibited several unique features during modulation of the H+,K+-ATPase reaction. It appreciably enhances affinity of the H+,K+-ATPase for K+, known to increase turnover of the enzyme. To complement this K+ affinity, the activator also enhances ability of the H+,K+-ATPase to generate more transition state (E*.ATP) complex by increasing the entropy of activation (delta S++) of the system as revealed from an Arrhenius plot of the data on temperature activation. In addition, the activator shows both positive cooperativity and strong inhibition, depending on its concentration. Thus, up to the ratio of the H+,K+-ATPase and activator of about 1:2 (on the protein basis), the activator shows sigmoidal activation (Hill coefficient = 4.5), but beyond such concentration a strong inhibition was observed. Finally, Ca2+ at low (2-4 microM) concentration strongly inhibits the activator-stimulated H+,K+-ATPase. It is proposed that the activator may be acting as a link in the signal transducing cascade system between the intracellular second messenger (Ca2+) and the physiological response (gastric H+ transport).  相似文献   

17.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

18.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

19.
Studies with intact and lysed gastric microsomal vesicles demonstrate that there are two pNPP (p-nitrophenyl phosphate)-and one ATP-hydrolytic sites within the gastric H+, K+-ATPase [(H+ + K+)-transporting ATPase] complex. Whereas the ATPase site is located exclusively on the vesicle exterior, the pNPPase sites are distributed equally on both sides of the bilayer. Competition by ATP for the pNPPase reaction on the vesicle exterior suggests that both ATP and pNPP are hydrolysed at the same catalytic site present at the outside surface of the intact vesicles. However, a biphasic inhibition of the K+-pNPPase (K+-stimulated pNPPase) by ATP in the lysed vesicles suggest the pNPPase site of the vesicle interior to have very low affinity (Ki approximately equal to 1.2 mM) for ATP compared with the vesicle exterior (Ki approximately equal to 0.2 mM). Studies with spermine, which competes with K+ for the K+-pNPPase reaction without inhibiting the H+, K+-ATPase, suggest there are two separate K+ sites for the pNPPase reaction and another distinct K+ site for the ATPase reaction. In contrast with the K+ site for the ATPase, which is located opposite to the catalytic site across the bilayer, both the K+ and the catalytic site for the pNPPase are located on the same side. The data clearly demonstrate that the pNPPase is not a manifestation of the phosphatase step of the total H+, K+-ATPase reaction. The K+-pNPPase associated with the Na+, K+-ATPase also has properties strikingly similar to the gastric K+-pNPPase system, suggesting a resemblance in the basic operating principle of the two ion-transporting enzymes. A unified model has been proposed to explain the present data and many other observations reported in the literature for the ATPase-mediated transport of univalent cations.  相似文献   

20.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号