首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Photoaffinity labeling of small intestinal brush-border membrane vesicles with photolabile bile salt derivatives was performed to identify bile salt-binding polypeptides in these membranes. The derivatives used in this study were the sodium salts of 7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, 3 beta-azido-7 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid, their respective taurine conjugates, and (11 xi-azido-12-oxo-3 alpha, 7 alpha-dihydroxy-5 beta-cholan-24-oyl)-2-aminoethanesulfonic acid. With ileal brush-border membrane vesicles, photoaffinity labeling resulted in the identification of 5 polypeptides with apparent molecular weights of 125,000, 99,000, 83,000, 67,000, and 43,000. The extent of labeling depended on the photolabile derivative employed. In jejunal brush-border membrane vesicles, polypeptides with apparent molecular weights of 125,000, 94,000, 83,000, 67,000, and 43,000 were labeled. The results indicate that the binding polypeptides involved in bile salt transport in ileal brush-border membrane vesicles are 1) similar with one exception to those concerned with bile salt transport in jejunal brush-border membranes, and 2) markedly different from those previously shown to be concerned with bile salt transport in plasma membranes of hepatocytes.  相似文献   

2.
The uptake of the alpha-aminocephalosporin cephalexin into brush-border membrane vesicles from rat renal cortex was independent on an inward H+-gradient in contrast to the intestinal transport system. The transport system could be irreversibly inhibited by photoaffinity labeling. Two binding polypeptides for beta-lactam antibiotics and dipeptides with apparent molecular weights 130,000 and 95,000 were identified by photoaffinity labeling with [3H]benzylpenicillin and N-(4-azido[3,5-3H]benzoyl) derivatives of cephalexin and glycyl-L-proline. The uptake of cephalexin and the labeling of the respective binding proteins was inhibited by beta-lactam antibiotics and dipeptides as with intestinal brush-border membranes. These data indicate that the transport systems for beta-lactam antibiotics and dipeptides in the brush-border membrane from rat kidney and small intestine are similar but not identical.  相似文献   

3.
The uptake of spermine by isolated rat intestinal brush-border membrane vesicles was studied. Uptake was biphasic, with an initial rapid uptake followed by a prolonged slower phase. Spermine uptake was not affected by a Na+ electrochemical gradient. The equilibrium uptake of spermine was considerably dependent upon the medium pH. At pH 7.5 the degree of uptake was higher than that at pH 6.5 and was inversely proportional to the extravesicular osmolarity with a relatively high binding, which was estimated by extraporation to infinite extravesicular osmolarity (zero intravesicular space), while the uptake at pH 6.5 was not altered under the various medium osmolarities. A kinetic analysis of the initial uptake rate of spermine at 37 degrees C gave a Km of 24.2 microM and Vmax of 206.1 pmol/mg protein per min. Furthermore, the uptake at 4 degrees C was nonlinear, providing evidence for saturability. These findings suggest that spermine was associated with intestinal brush-border membrane vesicles in two ways, by binding to the outside and inside of membrane vesicles. The interaction of spermine and the apical membrane can be a contributory factor in the accumulation of this polyamine in the intestine of the intact animal.  相似文献   

4.
The characteristics of carnosine (β-alanyl-l-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular > intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 ± 1.4 mM and a Vmax of 2.9 ± 0.2 nmol / mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-l-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

5.
Transport of carnosine by mouse intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
The characteristics of carnosine (beta-alanyl-L-histidine) transport have been studied using purified brush-border membrane vesicles from mouse small intestine. Uptake curves did not exhibit any overshoot phenomena, and were similar under Na+, K+ or choline+ gradient conditions (extravesicular greater than intravesicular). However, uptake of histidine showed an overshoot phenomenon in the presence of a Na+-gradient. There was no detectable hydrolysis of carnosine during 15 min of incubation with membrane vesicles under conditions used for transport experiments. Analysis of intravesicular contents further showed the complete absence of the constituent free amino acids of carnosine, and indicates that intact carnosine is transported. Studies on the effect of concentration on peptide uptake revealed that transport occurred by a saturable process conforming to Michaelis-Menten kinetics with a Km of 9.6 +/- 1.4 mM and a Vmax of 2.9 +/- 0.2 nmol/mg protein per 0.4 min. Uptake of carnosine was inhibited by both di- and tripeptides with a maximum inhibition of 68% by glycyl-L-leucyltyrosine. These results clearly demonstrate that carnosine is transported intact by a carrier-mediated, Na+-independent process.  相似文献   

6.
Biotin transport in rat intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
Transport of biotin across rat intestinal brush-border membrane was examined using the brush-border membrane vesicle (BBMV) technique. Uptake of biotin by BBMV is the result of transport of the substrate into the intravesicular space with negligible binding to membrane surfaces. In the presence of a Na+ gradient (out greater than in), transport of biotin was higher with a transient 'overshoot' phenomenon. In comparison, transport of biotin in the presence of a choline gradient (out greater than in) was lower with no 'overshoot' phenomenon. In both jejunal and ileal BBMV, the transport of biotin as a function of concentration was saturable in the presence of a Na+ gradient (out greater than in) but was linear in the presence of a choline gradient (out greater than in). Vmax of the Na+-dependent transport system was 0.88 and 0.37 pmol/mg protein per s and apparent Kt was 7.57 and 7.85 microM in jejunal and ileal BBMV, respectively. Structural analogues inhibited the transport process of biotin. Unlike the electrogenic transport of D-glucose, the transport of the anionic biotin was not affected by imposing a relatively positive intravesicular potential with the use of valinomycin and an inwardly-directed K+ gradient, suggesting that biotin transport is most probably an electroneutral process. This suggestion was further supported by studies on biotin transport in the presence of anions of different lipid permeability. The results of this study demonstrate that biotin transport across rat intestinal brush-border membrane is by a carrier-mediated, Na+-dependent and electroneutral process. Furthermore, transport of biotin is higher in the jejunum than the ileum.  相似文献   

7.
Folate binding and transport by rat kidney brush-border membrane vesicles   总被引:1,自引:0,他引:1  
[3H]Pteroylglutamic acid (PteGlu) uptake was studied using brush-border membrane vesicles isolated from rat kidney. Results on the uptake of [3H]PteGlu by brush-border membrane vesicles incubated in media of increasing osmolarities demonstrated that uptake was contributed by two components, intravesicular transport and membrane binding. Both the components of the uptake exhibited similar pH dependence, with maxima at pH 5.6, and were found to be saturable mechanisms with Km values of 6.7.10(-7) and 11.2.10(-7) M, respectively. These studies show that PteGlu is transported by isolated rat kidney brush-border membrane vesicles in a manner consistent with a saturable system and that a binding component may be functionally associated with this.  相似文献   

8.
The effect of membrane potential on the uptake of tryptamine, an organic cation, by rat intestinal brush-border membrane vesicles was studied. In the presence of an outwardly directed H(+)-gradient, the initial uptake of tryptamine was stimulated remarkably and the overshoot phenomenon was observed. In contrast, the uptake was depressed by an inwardly-directed H(+)-gradient. The effect of H(+)-gradient on the uptake of tryptamine was maintained in the presence of FCCP, whereas it vanished when voltage-clamped vesicles were used. Moreover, the uptake of tryptamine was linearly augmented with increase of the valinomycin-induced inside-negative K+ diffusion potential. These results suggest that tryptamine is taken up into intestinal brush-border membrane vesicles depends upon the ionic diffusion potential. The effect of several indole derivatives and amine compounds on the uptake of tryptamine was also examined. The uptake of tryptamine was inhibited by all amine compounds used, but anionic and zwitterionic compounds had no effect, suggesting that these amines interact on brush-border membrane and cause an inhibitory effect.  相似文献   

9.
D-Glucose transport was investigated in isolated brush-border membrane vesicles from human small intestine. Characteristics of D-glucose transport from the jejunum were compared with that in the mid and terminal ileum. Jejunal and mid-ileal D-glucose transport was Na+-dependent and electrogenic. The transient overshoot of jejunal D-glucose transport was significantly greater than corresponding values in mid-ileum. The terminal ileum did not exhibit Na+-dependent D-glucose transport, but did exhibit Na+-dependent taurocholate transport. Na+-glucose co-transport activity as measured by tracer-exchange experiments was greatest in the jejunum, and diminished aborally. We conclude that D-glucose transport in man is Na+-dependent and electrogenic in the proximal intestine and directly related to the activity of D-glucose-Na+ transporters present in the brush-border membranes. D-Glucose transport in the terminal ileum resembles colonic transport of D-glucose.  相似文献   

10.
We have previously reported the metabolic consequences of feeding rats Steenbock and Black's rickets-inducing diet, deficient in vitamin D and with an altered Ca/P ratio. Using isolated brush-border membrane vesicles prepared from the jejunum, ileum and duodenum of control and rachitic rats, we have demonstrated a marked decrease of Na+-dependent D-glucose uptake at jejunum-ileum level of rachitic rats. At duodenum level Na+-dependent D-glucose transport was not influenced by rickets. A lack of any significant difference between the two animal groups was observed studying the facilitated transport of D-glucose, the diffusion of L-glucose and the Na+-dependent uptake of phenylalanine and aspartate.  相似文献   

11.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

12.
In vivo kinetics of mucosal uptake of luminal 59Fe2+ by tied segments of normal mouse duodenum are characterised by a Km of approx. 100 μM and a Vmax of approx. 9 pmol/min per mg wet weight of intestine. These values were determined at pH 7.25 in the presence of excess sodium ascorbate. Studies with luminal Fe2+ concentrations of 100 μM reveal: (1) uptake is relatively independent of ascorbate: Fe ratio and luminal pH and (2) uptake is potently inhibited by 1 mM Co2+ or Mn2+ and large luminal NaCl concentrations but not by Ca2+. 3 days of hypoxia (0.5 atmospheres) yields no significant increase in subsequent total mucosal uptake by in vivo tied segments while uptake is significantly reduced by semi-starvation. Quantitative comparison of in vivo mucosal uptake with subsequent determination of isolated brush-border membrane 59Fe2+ transport in individual mice reveals a positive correlation (P < 0.01) between the two parameters. These results, in conjunction with studies of isolated mouse duodenal brush-border membrane (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta, 814, 381–388 and (1986) Biochim. Biophys. Acta 856, 109–114) suggest that the Fe2+ transport properties of isolated brush-border membrane are quantitatively adequate to explain in vivo mucosal uptake in normal and hypoxic mice at Fe2+ concentrations up to 100 μM.  相似文献   

13.
The characteristics of uridine transport were studied in rabbit intestinal brush-border membrane vesicles. Uridine was taken up into an osmotically active space in the absence of metabolism and there was no binding of uridine to the membrane vesicles. Uridine uptake was markedly enhanced by sodium, but showed no significant stimulation by other monovalent cations tested. Kinetic analysis of the sodium-dependent component of uridine flux indicated a single system obeying Michaelis-Menten kinetics (Km value of 6.4 +/- 1.4 microM with a Vmax of 9.1 +/- 3.6 pmol/mg protein per s as measured under zero-trans conditions with a 100 mM NaCl gradient at 24 degrees C). A variety of purine and pyrimidine nucleosides were able to inhibit sodium-dependent uridine transport, suggesting that these nucleosides are also permeants for the same system. Consistent with this suggestion was the finding that these nucleosides also stimulated uridine efflux from the brush-border membrane vesicles. The sodium: uridine coupling stoichiometry was found to be 1:1 as measured by the activation method. From these results it is concluded that a broad specificity sodium-dependent nucleoside transporter is present at the brush-border membrane surface of rabbit enterocytes.  相似文献   

14.
Phytosulfokine (PSK), an endogenous 5-amino-acid-secreted peptide in plants, affects cellular potential for growth via binding to PSKR1, a member of the leucine-rich repeat receptor kinase (LRR-RK) family. PSK interacts with PSKR1 in a highly specific manner with a nanomolar dissociation constant. However, it is not known which residues in the PSKR1 extracellular domain constitute the ligand binding pocket. Here, we have identified the PSK binding domain of carrot PSKR1 (DcPSKR1) by photoaffinity labeling. We cross-linked the photoactivatable PSK analog [(125)I]-[N(epsilon)-(4-azidosalicyl)Lys(5)]PSK with DcPSKR1 using UV irradiation and mapped the cross-linked region using chemical and enzymatic fragmentation. We also established a novel "on-column photoaffinity labeling" methodology that allows repeated incorporation of the photoaffinity label to increase the efficiency of the photoaffinity cross-linking reactions. We purified a labeled DcPSKR1 tryptic fragment using anti-PSK antibodies and identified a peptide fragment that corresponds to the 15-amino-acid Glu(503)-Lys(517) region of DcPSKR1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Deletion of Glu(503)-Lys(517) completely abolishes the ligand binding activity of DcPSKR1. This region is in the island domain flanked by extracellular LRRs, indicating that this domain forms a ligand binding pocket that directly interacts with PSK.  相似文献   

15.
Fe2+ uptake by mouse intestinal brush-border membrane vesicles consists of two components: a rapid, high affinity (Kd less than 1 microM), low capacity binding (less than 2 nmol/mg protein), presumably to the outside of the vesicles, and a second, large capacity component with an initial rate showing a hyperbolic dependence on medium Fe2+ (Km 35-90 microM). The latter, predominant process is relatively independent of medium ascorbate: Fe2+ ratio, is inhibited by Co2+ and Mn2+ but varies greatly from one membrane preparation to another. This component is strongly inhibited by large extravesicular NaCl and KCl concentrations and may represent transport into the vesicles. No significant change in uptake could be observed in vesicles prepared from hypoxic mice.  相似文献   

16.
A radioactive, photoactive Vinca alkaloid, N-(p-azido-[3,5-3H]-benzoyl)-N'-beta-aminoethylvindesine [( 3H]NABV) with pharmacological and biological activities similar to vinblastine was synthesized and used to identify specific Vinca alkaloid macromolecular interactions in calf brain homogenate by photoaffinity labeling. The most prominent photolabeled species were 54.3- and 21.5-kDa polypeptides. The Vinca alkaloid-binding specificity of these polypeptides was confirmed by competitive blocking of specific photolabeling by vinblastine but not by colchicine or daunorubicin. The 54.3- and 21.5-kDa polypeptides exhibited specific half-maximum saturable photolabeling at 2.1 and 0.95 X 10(-7) M [3H]NABV, respectively. Relative vinblastine and NABV association constants (Ka vinblastine/Ka NABV) for the 54.3- and 21.5-kDa polypeptides were estimated to be 0.86 and 1.4, respectively. The 54.3-kDa component was found in both high speed (100,000 X g; 1 h) pellet and supernatant fractions, whereas the 21.5-kDa component was located primarily in the high speed pellet. Photolabeling of both components was maximal after 12-min UV light exposure, linear up to 120 micrograms of homogenate protein and only slightly affected by the nitrene scavenger p-aminobenzoic acid. The 54.3-kDa polypeptides of [3H]NABV-photolabeled calf brain high speed supernatant and detergent-solubilized high speed pellet fractions were identified as tubulin subunits by immunoprecipitation with monoclonal antibodies to alpha- or beta-tubulin subunits. Although the identity and function of the 21.5-kDa polypeptide is not known, this polypeptide may have a role in membrane-related effects of the Vinca alkaloids. These results demonstrate that [3H]NABV is an attractive tool for identifying and characterizing specific high affinity vinblastine cellular polypeptide acceptors which may initiate or mediate known and unknown mechanisms of Vinca alkaloid action.  相似文献   

17.
Fe2+ uptake by brush-border membrane vesicles from rabbit duodenum has been investigated and found to show similar qualitative properties to those previously demonstrated with mouse proximal intestine brush-border membrane vesicles (Simpson, R.J. and Peters, T.J. (1986) Biochim. Biophys. Acta 856, 109-114). In particular, a relatively low affinity (Km(app) approx. 83 microM), NaCl and pH sensitive transport component is present. The disruption of 59Fe2+-laden vesicles with sodium cholate, followed by gel filtration or centrifugal analysis reveals that cholate insoluble material (Mr greater than 10(6)) is the major destination for 59Fe2+ taken up by intact vesicles. Analysis of cholate extracts for Fe2+ binding ability reveals a single high-capacity (49.8 +/- 15.6 nmol/mg vesicle protein (S.E., n = 3)), high-affinity (Kd(app) less than 5 microM) binding component with an Mr equivalent to approx. 10(4) on gel filtration in the presence of cholate. This binding component is extracted into chloroform/methanol (2:1, v/v) is relatively heat and protease resistant and thus appears to be a lipid.  相似文献   

18.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent K(m)=18.7 microM; V(max)=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent K(m)=11.5 microM and V(max)=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na(+)-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na(+)-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

19.
Summary The mechanism of steroid uptake by the cell remains controversial. [3H]R5020 was utilized to characterize by photoaffinity labeling the steroid binding site in plasma membrane. This binding was saturable, reversible and had one type of binding site (K d = 33 ± 4 nm, B max = 32 ± 2 pmol/mg). [3H]R5020 could be prevented from binding by a variety of steroids (cortisol, progesterone, deoxycorticosterone, and levonorgestrel); estradiol did not have affinity for this binding site. The kinetics of R5020 photoactivation was time dependent and saturable. SDS-PAGE showed a specific band which corresponded to a 53-kDa peptide. The sucrose density gradient analysis has revealed the existence of a protein with a sedimentation coefficient of 3.6 ± 0.2 S. This polypeptide shows different characteristics than cytosolic steroid receptor or serum steroid binding proteins. This binding protein could correspond to the steroid binding site previously found in the plasma membrane.This work was supported by grants PB85-0461 from the Comisión Asesora de Investigatión Científica y Técnica and PGV-8612 from the Departamento de Educatión, Universidades e Investigation del Gobierno Vasco. We thank Roussel-Uclaf (France) for the nonradioactive RU-steroids kindly provided.  相似文献   

20.
K Muramoto  J Ramachandran 《Biochemistry》1981,20(12):3380-3385
The interaction of the pituitary hormone corticotropin (ACTH) with bovine serum albumin (BSA) was investigated by photoaffinity labeling with 2-nitro-4-azido-phenylsulfenyl (2,4-NAPS) derivatives of aCTH and [Trp-(SH)9]ACTH. Nearly 30 mol % of tritiated [2,4-NAPS-Trp9]ACTH was covalently bound to BSA at a molar ratio of hormone:BSA of 1.33. The [2,4-NAPS-Trp9] [3H]ACTH-BSA complex was isolated, and the CNBr fragments of the complex were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The radioactivity was predominantly associated with the amino-terminal CNBr fragment corresponding to residues 1-183 in BSA. This result was confirmed by studies of the inhibition of covalent labeling of BSA by photoreactive ACTH. 8-Anilinonaphthalenesulfonic acid which binds to the amino-terminal domain of BSA strongly inhibited the photolabeling of BSA by [2,4-NAPS-Trp9][3H]ACTH. Palmitate and progesterone, known to bind to the carboxy-terminal domains of BSA, did not inhibit the incorporation of [2,4]NAPS-Trp9][3H]ACTH into BSA. The removal of ACTH from the covalent complexes was also investigated. The release of ACTH from the [2,4]NAPSS-Trp9]ACTH--BSA complex by treatment with beta-mercaptoethanol was complete in 6 h, but only 80% of ACTH was released from [2,4]NAPS-Trp9]ACTH--BSA under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号