首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The γ-secretase complex is a major therapeutic target for the prevention and treatment of Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific inhibitors of γ-secretase prevented formation of new plaques. It has not yet been shown directly whether existing plaques would be affected by γ-secretase inhibitor treatment. Similarly, alterations in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic effect. Reversal of these alterations is an important endpoint of successful therapy whether or not a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with multiphoton microscopy to study the effects of the orally active γ-secretase inhibitor LY-411575 in 10–11 month old APP:PS1 mice with established amyloid pathology and neuritic abnormalities. Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly imaging sessions in living mice treated daily (5 mg/kg) for 3 weeks with the compound. Although LY-411575 reduced Aβ levels in plasma and brain, it did not have an effect on the size of existing plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed at inhibition of Aβ generation are less effective for reversal of existing plaques than for prevention of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least under these conditions where Aβ production is suppressed but not completely blocked. Therefore, a combination therapy of Aβ suppression with agents that increase clearance of amyloid and/or prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing pathology.  相似文献   

2.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

3.
Alzheimer’s disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, β-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer’s disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer’s disease. Impaired cortical cholinergic neurotransmission may also contribute to β-amyloid plaque pathology in Alzheimer’s disease by affecting expression and processing of the β-amyloid precursor protein (APP). Vice versa, low level of soluble β-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of β-amyloid plaques in Alzheimer’s disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, β-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.  相似文献   

4.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

5.
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and the formation of senile plaques. Silymarin, an extract of milk thistle, has long been used as a medicinal herb for liver diseases. Here we report marked suppression of amyloid β-protein (Aβ) fibril formation and neurotoxicity in PC12 cells after silymarin treatment in vitro. In vivo studies had indicated a significant reduction in brain Aβ deposition and improvement in behavioral abnormalities in amyloid precursor protein (APP) transgenic mice that had been preventively treated with a powdered diet containing 0.1% silymarin for 6 months. The silymarin-treated APP mice also showed less anxiety than the vehicle-treated APP mice. These behavioral changes were associated with a decline in Aβ oligomer production induced by silymarin intake. These results suggest that silymarin is a promising agent for the prevention of AD.  相似文献   

6.
Increased production and deposition of the 40-42-amino acid beta-amyloid peptide (Abeta) is believed to be central to the pathogenesis of Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP), but the mechanisms that regulate APP processing to produce Abeta are not fully understood. X11alpha (also known as munc-18-interacting protein-1 (Mint1)) is a neuronal adaptor protein that binds APP and modulates APP processing in transfected non-neuronal cells. To investigate the in vivo effect of X11alpha on Abeta production in the brain, we created transgenic mice that overexpress X11alpha and crossed these with transgenics harboring a familial Alzheimer's disease mutant APP that produces increased levels of Abeta (APPswe Tg2576 mice). Analyses of Abeta levels in the offspring generated from two separate X11alpha founder mice revealed a significant, approximate 20% decrease in Abeta(1-40) in double transgenic mice expressing APPswe/X11alpha compared with APPswe mice. At a key time point in Abeta plaque deposition (8 months old), the number of Abeta plaques was also deceased in APPswe/X11alpha mice. Thus, we report here the first demonstration that X11alpha inhibits Abeta production and deposition in vivo in the brain.  相似文献   

7.
R Siman  J P Card  R B Nelson  L G Davis 《Neuron》1989,3(3):275-285
Although the beta-amyloid peptide is an established core component of neuritic plaques that accumulate in Alzheimer's disease, the mechanisms responsible for its deposition are not well understood. We now report that lesions of rat hippocampal neurons cause a time-dependent, long-lasting elevation of immunoreactivity for the beta-amyloid precursor protein (APP) in neighboring astrocytes, a cell type not normally containing the protein. The increase represents astroglial expression of the protein rather than a scavenging of APP released by damaged neurons. Immunoelectron microscopy confirmed that APP-containing cells are reactive astroglia, both surrounding capillaries and within the neuropil. These results demonstrate that neuronal damage stimulates APP expression in adult brain and suggest that reactive astrocytes may be a source of the beta-amyloid that forms neuropathological plaques in Alzheimer's disease.  相似文献   

8.
Alzheimer''s disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaque formation is one of the pathological hallmarks of Alzheimer''s disease. The central component of neuritic plaques is a small filamentous protein called amyloid β protein (Aβ)1, which is derived from sequential proteolytic cleavage of the beta-amyloid precursor protein (APP) by β-secretase and γ-secretase. The amyloid hypothesis entails that Aγ-containing plaques as the underlying toxic mechanism in AD pathology2. The postmortem analysis of the presence of neuritic plaque confirms the diagnosis of AD. To further our understanding of Aγ neurobiology in AD pathogenesis, various mouse strains expressing AD-related mutations in the human APP genes were generated. Depending on the severity of the disease, these mice will develop neuritic plaques at different ages. These mice serve as invaluable tools for studying the pathogenesis and drug development that could affect the APP processing pathway and neuritic plaque formation. In this protocol, we employ an immunohistochemical method for specific detection of neuritic plaques in AD model mice. We will specifically discuss the preparation from extracting the half brain, paraformaldehyde fixation, cryosectioning, and two methods to detect neurotic plaques in AD transgenic mice: immunohistochemical detection using the ABC and DAB method and fluorescent detection using thiofalvin S staining method.  相似文献   

9.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

10.
Many of the risk factors for cerebrovascular disease and atherosclerosis also increase the risk of Alzheimer's disease, characterized by the cerebral deposition of beta-amyloid plaques resulting from the abnormal processing of the transmembrane amyloid precursor protein (APP). The initiating event of cholesterol-induced atherosclerosis is the retention and accumulation of atherogenic apolipoprotein B (apoB) together with low-density lipoproteins in the vascular intima. Biglycan, a member of the small leucine-rich protein family, was suspected of contributing to this process. The individual and combined overexpressions of biglycan and apoB-100 were therefore examined on the cortical APP mRNA levels of transgenic mice by means of semiquantitative PCR. As compared with the control littermates, transgenic biglycan mice had significantly increased cortical APP695 (122%) and APP770 (157%) mRNA levels, while the double transgenic (apoB(+/-)xbiglycan(+/-)) mice did not exhibit any changes. These results provide the first experimental evidence that the atherogenic risk factor biglycan alters APP splicing and may participate in the pathogenesis of both Alzheimer and vascular dementias.  相似文献   

11.
One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.  相似文献   

12.
The cardinal lesions of Alzheimer's disease are neurofibrillary tangles, senile neuritic plaques, and vascular amyloid, the latter generally involving cortical arteries and small arterioles. All three lesions are composed of amyloid-like, beta-pleated sheet fibrils. Recently, a 4,200-dalton peptide has been isolated from extraparenchymal meningeal vessels, neuritic plaques, and neurofibrillary tangles. The assumption of N-terminal homogeneity in vascular amyloid has been used as an argument for a neuronal (versus blood) origin of the peptide. However, intracortical microvessels from Alzheimer's disease have not been previously isolated. The present studies describe the isolation of a microvessel fraction from Alzheimer's disease and control fresh autopsy human brain. Alzheimer's disease isolated brain microvessels that were extensively laden with amyloid and control microvessels were solubilized in 90% formic acid and analyzed by urea sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The arteriole fraction from the Alzheimer's subject with extensive amyloid angiopathy contained a unique 4,200-dalton peptide, whereas the arterioles or capillaries isolated from two controls and two Alzheimer's disease subjects without angiopathy did not. This peptide was purified by HPLC and amino acid composition analysis showed the peptide is nearly identical to the 4,200-dalton peptide recently isolated from neuritic plaques or from neurofibrillary tangles. Sequence analysis revealed N-terminal heterogeneity. The N-terminal sequence was: Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr, which is identical to the N-terminal sequence of the 4,200-dalton peptide isolated previously from extraparenchymal meningeal vessels and neuritic plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The main component of Alzheimer's disease (AD) senile plaques is amyloid-beta peptide (Abeta), a proteolytic fragment of the amyloid precursor protein (APP). Platelets contain both APP and Abeta and may contribute to the perivascular amyloid deposition seen in AD. However, no data are available concerning the biochemical mechanism(s) involved in their formation and release by these cells. We found that human platelets released APP and Abeta following activation with collagen or arachidonic acid. Inhibition of platelet cyclooxygenase (COX) reduced APP but not Abeta release following those stimuli. In contrast, activation of platelets by thrombin and calcium ionophore caused release of both APP and Abeta in a COX-independent fashion. Ex vivo studies showed that, despite suppression of COX activity, administration of aspirin did not modify Abeta or APP levels in serum or plasma, suggesting that this enzyme plays only a minor role in vivo. We examined the regulation of APP cleavage and release from activated platelets and found that cleavage requires protein kinase C (PKC) activity and is regulated by the intracellular second messengers phosphatidylinositol 2-phosphate and Ca(2+). Our data provide the first evidence that in human platelets COX is a minor component of APP secretion whereas PKC plays a major role in the secretory cleavage of APP. By contrast, Abeta release may represent secretion of preformed peptide and is totally independent of both COX and PKC activity.  相似文献   

14.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by extracellular deposition of beta-amyloid (Abeta) peptide containing neuritic plaques. Abeta peptides are proteolytically derived from the membrane-bound amyloid precursor protein (APP). Although the function of APP is not entirely clear, previous studies demonstrate that neuronal APP colocalizes with beta(1) integrin receptors at sites of focal adhesion, suggesting that APP is involved in mediating neuronal process adhesion. Integrin-dependent adhesion is also a well-characterized component of immune cell proinflammatory activation. Using primary mouse microglia and the human monocytic cell line, THP-1, we have begun investigating the role of APP in integrin-dependent activation. Co-immunoprecipitation studies demonstrate that APP is recruited into a multi-receptor signaling complex during beta(1) integrin-mediated adhesion of monocytes. Stimulation induces a subsequent, specific recruitment of tyrosine phosphorylated proteins to APP, including Lyn and Syk. Antibody cross-linking of cell surface APP leads to a similar response characterized by activation and recruitment of tyrosine kinases to APP as well as subsequent activation of mitogen-activated protein kinases and increased proinflammatory protein levels. These data demonstrate that APP can act as a proinflammatory receptor in monocytic lineage cells and provide insight into the contribution of this protein to the inflammatory conditions described in Alzheimer's disease.  相似文献   

15.
Alzheimer’s disease (AD) is characterized by progressive cognitive impairment and the formation of senile plaques. Silymarin, an extract of milk thistle, has long been used as a medicinal herb for liver diseases. Here we report marked suppression of amyloid β-protein (Aβ) fibril formation and neurotoxicity in PC12 cells after silymarin treatment in vitro. In vivo studies had indicated a significant reduction in brain Aβ deposition and improvement in behavioral abnormalities in amyloid precursor protein (APP) transgenic mice that had been preventively treated with a powdered diet containing 0.1% silymarin for 6 months. The silymarin-treated APP mice also showed less anxiety than the vehicle-treated APP mice. These behavioral changes were associated with a decline in Aβ oligomer production induced by silymarin intake. These results suggest that silymarin is a promising agent for the prevention of AD.  相似文献   

16.
Alzheimer's disease (AD) is characterized by increased beta amyloid (Abeta) levels, extracellular Abeta deposits in senile plaques, neurofibrillary tangles, and neuronal loss. However, the physiological role of normal levels of Abeta and its parent protein, the amyloid precursor protein (APP) are unknown. Here we report that low-level transgenic (Tg) expression of the Swedish APP mutant gene (APPswe) in Fischer-344 rats results in attenuated age-dependent cognitive performance decline in 2 hippocampus-dependent learning and memory tasks compared with age-matched nontransgenic Fischer-344 controls. TgAPPswe rats exhibit mild increases in brain APP mRNA (56.8%), Abeta-42 (21%), and Abeta-40 (6.1%) peptide levels at 12 mo of age, with no extracellular Abeta deposits or senile plaques at 6, 12, and 18 mo of age, whereas 3- to 6-fold increases in Abeta levels are detected in plaque-positive human AD patients and transgenic mouse models. The data support the hypothesis that a threshold paradigm underlies Abeta-related pathology, below which APP expression may play a physiological role in specific hippocampus-dependent tasks, most likely related to its neurotrophic role.  相似文献   

17.
Alzheimer’s disease is characterised by regional neuronal degeneration, synaptic loss, and the progressive deposition of the 4 kDa β-amyloid peptide (Aβ) in senile plaques and accumulation of tau protein as neurofibrillary tangles. Aβ derives from the larger precursor molecule, amyloid precursor protein (APP) by proteolytic processing via β- and γ-secretases. While APP expression is well documented in neurons and astrocytes, the case for oligodendrocytes is less clear. The latter cell type is reported to express different isoforms of APP, and we have confirmed this observation by immunocytochemistry in cultures of differentiated rat cortical oligodendrocytes. Moreover, by means of a sensitive electrochemiluminescent immunoassay employing Aβ C-terminal specific antibodies, mature oligodendrocytes are shown to secrete the 40 and 42 amino acid Aβ species (Aβ40 and Aβ42). Secretion of Aβ peptides was reduced by incubating oligodendrocytes with α- and β-secretase inhibitors, or a γ-secretase inhibitor. Disturbances of APP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in Alzheimer’s disease and other senile dementias.  相似文献   

18.
The cerebral amyloid deposited in Alzheimer's disease (AD) contains a 4.2 kDa beta amyloid polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). Three beta APP mRNAs encoding proteins of 695, 751, and 770 amino acids have previously been identified. In each of these, there is a single membrane-spanning domain close to the carboxyl-terminus of the beta APP, and the 42 amino acid beta AP sequence extends from within the membrane-spanning domain into the large extracellular region of the beta APP. We raised rabbit antisera to a peptide corresponding to amino acids 45-62 near the amino-terminus of the beta APP. We show that these antisera detect the beta APP by demonstrating that they (i) label a set of approximately 120 kDa membrane-associated proteins in human brain previously detected by antisera to the carboxyl-terminus of beta APP and (ii) label a set of approximately 120 kDa membrane-associated proteins that are selectively overexpressed in cells transfected with a full length beta APP expression construct. The beta APP45-62 antisera specifically stain senile plaques in AD brains. This finding, along with the previous demonstration that antisera to the carboxyl-terminus of the beta APP label senile plaques, indicates that both near amino-terminal and carboxyl-terminal domains of the beta APP are present in senile plaques and suggests that proteolytic processing of the full length beta APP molecule into insoluble amyloid fibrils occurs in a highly localized fashion at the sites of amyloid deposition in AD brains.  相似文献   

19.
20.
A(beta) generation in autophagic vacuoles   总被引:1,自引:0,他引:1  
Alzheimer's disease (AD) is the most common form of dementia among older people. It is characterized by the extracellular accumulation of beta-amyloid (Abeta) deposits called senile or neuritic plaques. Abeta is generated by the proteolytic cleavage of Abeta precursor protein (APP) by beta and gamma-secretases localized in the secretory and endocytic compartments. In this issue, Yu et al. (on p. 87) report a novel mechanism for the generation of Abeta peptides, which takes place in autophagic vacuoles (AVs) that accumulate in AD brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号