首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levitan IB 《Neuron》2008,59(2):188-189
Ion channels are modulated by multiple molecular mechanisms. In this issue of Neuron, Pietrzykowski et al. expand the mechanistic repertoire by demonstrating that ethanol-induced microRNA can modulate the pattern of mRNA splice variants from which BK potassium channels are constructed. Because BK channels are important targets of ethanol, this finding has implications for mechanisms of ethanol sensitivity and tolerance.  相似文献   

2.
miR-148 targets human DNMT3b protein coding region   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small noncoding RNA molecules of 20-24 nucleotides that regulate gene expression. In animals, miRNAs form imperfect interactions with sequences in the 3' Untranslated region (3'UTR) of mRNAs, causing translational inhibition and mRNA decay. In contrast, plant miRNAs mostly associate with protein coding regions. Here we show that human miR-148 represses DNA methyltransferase 3b (Dnmt3b) gene expression through a region in its coding sequence. This region is evolutionary conserved and present in the Dnmt3b splice variants Dnmt3b1, Dnmt3b2, and Dnmt3b4, but not in the abundantly expressed Dnmt3b3. Whereas overexpression of miR-148 results in decreased DNMT3b1 expression, short-hairpin RNA-mediated miR-148 repression leads to an increase in DNMT3b1 expression. Interestingly, mutating the putative miR-148 target site in Dnmt3b1 abolishes regulation by miR-148. Moreover, endogenous Dnmt3b3 mRNA, which lacks the putative miR-148 target site, is resistant to miR-148-mediated regulation. Thus, our results demonstrate that the coding sequence of Dnmt3b mediates regulation by the miR-148 family. More generally, we provide evidence that coding regions of human genes can be targeted by miRNAs, and that such a mechanism might play a role in determining the relative abundance of different splice variants.  相似文献   

3.
4.
5.

Background  

Large conductance calcium- and voltage activated potassium (BK) channels are important determinants of neuronal excitability through effects on action potential duration, frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1, which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless (ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape their electrical properties during development. However, whether differential splicing of BK channel variants occurs during development of the mammalian CNS has not been examined.  相似文献   

6.
7.
8.
9.
BK Ca2+-activated K+ currents exhibit diverse properties across tissues. The functional variation in voltage- and Ca2+-dependent gating underlying this diversity arises from multiple mechanisms, including alternate splicing of Kcnma1, the gene encoding the pore-forming (α) subunit of the BK channel, phosphorylation of α subunits, and inclusion of β subunits in channel complexes. To address the interplay of these mechanisms in the regulation of BK currents, two native splice variants, BK0 and BKSRKR, were cloned from a tissue that exhibits dynamic daily expression of BK channel, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of mouse hypothalamus. The BK0 and BKSRKR variants differed by the inclusion of a four–amino acid alternate exon at splice site 1 (SRKR), which showed increased expression during the day. The functional properties of the variants were investigated in HEK293 cells using standard voltage-clamp protocols. Compared with BK0, BKSRKR currents had a significantly right-shifted conductance–voltage (G-V) relationship across a range of Ca2+ concentrations, slower activation, and faster deactivation. These effects were dependent on the phosphorylation state of S642, a serine residue within the constitutive exon immediately preceding the SRKR insert. Coexpression of the neuronal β4 subunit slowed gating kinetics and shifted the G-V relationship in a Ca2+-dependent manner, enhancing the functional differences between the variants. Next, using native action potential (AP) command waveforms recorded from SCN to elicit BK currents, we found that these splice variant differences persist under dynamic activation conditions in physiological ionic concentrations. AP-induced currents from BKSRKR channels were significantly reduced compared with BK0, an effect that was maintained with coexpression of the β4 subunit but abolished by the mutation of S642. These results demonstrate a novel mechanism for reducing BK current activation under reconstituted physiological conditions, and further suggest that S642 is selectively phosphorylated in the presence of SRKR.  相似文献   

10.
11.
12.
13.
14.
The pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels are encoded by a single gene that undergoes extensive alternative pre-mRNA splicing. However, the extent to which differential exon usage at a single site of splicing may confer functionally distinct properties on BK channels is largely unknown. Here we demonstrated that alternative splicing at site of splicing C2 in the mouse BK channel C terminus generates five distinct splice variants: ZERO, e20, e21(STREX), e22, and a novel variant deltae23. Splice variants display distinct patterns of tissue distribution with e21(STREX) expressed at the highest levels in adult endocrine tissues and e22 at embryonic stages of mouse development. deltae23 is not functionally expressed at the cell surface and acts as a dominant negative of cell surface expression by trapping other BK channel splice variant alpha-subunits in the endoplasmic reticulum and perinuclear compartments. Splice variants display a range of biophysical properties. e21(STREX) and e22 variants display a significant left shift (>20 mV at 1 microM [Ca2+]i) in half-maximal voltage of activation compared with ZERO and e20 as well as considerably slower rates of deactivation. Splice variants are differentially sensitive to phosphorylation by endogenous cAMP-dependent protein kinase; ZERO, e20, and e22 variants are all activated, whereas e21 (STREX) is the only variant that is inhibited. Thus alternative pre-mRNA splicing from a single site of splicing provides a mechanism to generate a physiologically diverse complement of BK channel alpha-subunits that differ dramatically in their tissue distribution, trafficking, and regulation.  相似文献   

15.
16.
17.
18.
Previous studies have demonstrated that several splice variants are derived from both the caspase 9 and Bcl-x genes in which the Bcl-x splice variant, Bcl-x(L) and the caspase 9 splice variant, caspase 9b, inhibit apoptosis in contrast to the pro-apoptotic splice variants, Bcl-x(s) and caspase 9. In a recent study, we showed that ceramide induces the dephosphorylation of SR proteins, a family of protein factors that regulate alternative splicing. In this study, the regulation of the alternative processing of pre-mRNA of both caspase 9 and Bcl-x(L) was examined in response to ceramide. Treatment of A549 lung adenocarcinoma cells with cell-permeable ceramide, D-e-C(6) ceramide, down-regulated the levels of Bcl-x(L) and caspase 9b mRNA and immunoreactive protein with a concomitant increase in the mRNA and immunoreactive protein levels of Bcl-x(s) and caspase 9 in a dose- and time-dependent manner. Pretreatment with calyculin A (5 nm), an inhibitor of protein phosphatase-1 (PP1) and protein phosphatase 2A (PP2A) blocked ceramide-induced alternative splicing in contrast to okadaic acid (10 nm), a specific inhibitor of PP2A at this concentrations in cells, demonstrating a PP1-mediated mechanism. A role for endogenous ceramide in regulating the alternative splicing of caspase 9 and Bcl-x was demonstrated using the chemotherapeutic agent, gemcitabine. Treatment of A549 cells with gemcitabine (1 microm) increased ceramide levels 3-fold via the de novo sphingolipid pathway as determined by pulse labeling experiments and inhibition studies with myriocin (50 nm), a specific inhibitor of serine palmitoyltransferase (the first step in de novo synthesis of ceramide). Treatment of A549 cells with gemcitabine down-regulated the levels of Bcl-x(L) and caspase 9b mRNA with a concomitant increase in the mRNA levels of Bcl-x(s) and caspase 9. Again, inhibitors of ceramide synthesis blocked this effect. We also demonstrate that the change in the alternative splicing of caspase 9 and Bcl-x occurred prior to apoptosis following treatment with gemcitabine. Furthermore, doses of D-e-C(6) ceramide that induce the alternative splicing of both caspase 9 and Bcl-x-sensitized A549 cells to daunorubicin. These data demonstrate a role for protein phosphatases 1 (PP1) and endogenous ceramide generated via the de novo pathway in regulating this mechanism. This is the first report on the dynamic regulation of RNA splicing of members of the Bcl-2 and caspase families in response to regulators of apoptosis.  相似文献   

19.
Large conductance calcium-activated potassium (BK) channels are widely expressed in the nervous system. We have recently shown that principal neurons from canine intracardiac ganglia (ICG) express a paxilline- and TEA-sensitive BK current, which increases neuronal excitability. In the present work, we further explore the molecular constituents of the BK current in canine ICG. We found that the β1 and β4 regulatory subunits are expressed in ICG. Single channel voltage-dependence at different calcium concentrations suggested that association of the BKα with a particular β subunit was not enough to explain the channel activity in this tissue. Indeed, we detected the presence of several splice variants of the BKα subunit. In conclusion, BK channels in canine ICG may result from the arrangement of different BKα splice variants, plus accessory β subunits. The particular combinations expressed in canine IC neurons likely rule the excitatory role of BK current in this tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号