首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dual-color fluorescence-burst analysis was used to study melittin-induced leakage of macromolecules from liposomes of various lipid compositions. To perform dual-color fluorescence-burst analysis, fluorescently labeled size-marker molecules were encapsulated into liposomes, labeled with a second lipid-attached fluorophore. By correlating the fluorescence bursts, resulting from the liposomes diffusing through the detection volume of a dual-color confocal microscope, the distribution of size-marker molecules over the liposomes was determined. It was found that melittin causes leakage via two different mechanisms: 1), For liposomes composed of neutral bilayer-forming lipids, low melittin concentrations induced pore formation with the pore size depending on the melittin concentration. 2), For liposomes containing anionic and/or nonbilayer forming lipids, melittin induced fusion or aggregation of liposomes accompanied by a-specific leakage. Experiments with liposomes prepared from Escherichia coli lipid extracts and intact cells of Lactococcus lactis indicate that both mechanisms are physiologically relevant.  相似文献   

2.
The mechanosensitive channel protein of large conductance, MscL, from Escherichia coli has been implicated in protein efflux, but the passage of proteins through the channel has never been demonstrated. We used dual-color fluorescence-burst analysis to evaluate the efflux of fluorescent labeled compounds through MscL. The method correlates the fluctuations in intensity of fluorescent labeled membranes and encapsulated (macro)molecules (labeled with second fluorophore) for each liposome diffusing through the observation volume. The analysis provides quantitative information on the concentration of macromolecules inside the liposomes and the fraction of functional channel proteins. For MscL, reconstituted in large unilamellar vesicles, we show that insulin, bovine pancreas trypsin inhibitor, and other compounds smaller than 6.5 kDa can pass through MscL, whereas larger macromolecules cannot.  相似文献   

3.
The objectives of this study were to observe the penetrative and mucoadhesive behavior of polymer-coated liposomes into the intestinal mucosa of rats. Chitosan (CS) and negatively charged liposomes were chosen as model polymer-coated liposomes. In order to observe their behavior, chitosan was labeled with Fluorescence Isothiocyanate (FITC) via chemical reaction at the isothiocyanate group of FITC and the primary amino group of chitosan; the liposomes (Lips) were marked by incorporation of DiI into the liposomal formulation. FITC-labeled chitosan (FITC-CS), Non-Lips, and FITC-labeled CS-coated Liposomes (FITC-CS-Lips) were intragastrically administered into male Wistar rats, and the behavior of the molecules was subsequently visualized by CLSM (Confocal Laser Scanning Microscopy). The results demonstrated that the chitosan molecules themselves, as well as the liposomes, could penetrate across the intestinal mucosa. Moreover, the CLSM images demonstrated a lack of separation of the chitosan molecules from the surface of the liposomes after the administration of chitosan-coated liposomes.  相似文献   

4.
The objectives of this study were to observe the penetrative and mucoadhesive behavior of polymer-coated liposomes into the intestinal mucosa of rats. Chitosan (CS) and negatively charged liposomes were chosen as model polymer-coated liposomes. In order to observe their behavior, chitosan was labeled with Fluorescence Isothiocyanate (FITC) via chemical reaction at the isothiocyanate group of FITC and the primary amino group of chitosan; the liposomes (Lips) were marked by incorporation of DiI into the liposomal formulation. FITC-labeled chitosan (FITC-CS), Non-Lips, and FITC-labeled CS-coated Liposomes (FITC-CS-Lips) were intragastrically administered into male Wistar rats, and the behavior of the molecules was subsequently visualized by CLSM (Confocal Laser Scanning Microscopy). The results demonstrated that the chitosan molecules themselves, as well as the liposomes, could penetrate across the intestinal mucosa. Moreover, the CLSM images demonstrated a lack of separation of the chitosan molecules from the surface of the liposomes after the administration of chitosan-coated liposomes.  相似文献   

5.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

6.
Hydrophobic interactions between nine model proteins and net-neutral lipid bilayer membranes (liposomes) under stress conditions were quantitatively examined by using immobilized liposome chromatography (ILC). Small or large unilamellar liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and immobilized in a gel matrix by utilizing covalent coupling between amino-containing lipids and activated gel beads or avidin–biotin biospecific binding. Retardation of bovine carbonic anhydrase (CAB) in ILC was pronounced at particular temperatures (50 and 60 °C) where the local hydrophobicity of theses protein molecules becomes sufficiently large. Protein-induced leakage of a hydrophilic dye (calcein) from immobilized liposomes interior was also drastically enhanced at particular temperatures where large retardation was observed. For other proteins examined, similar results were also observed. The specific capacity factor of the proteins characteristic for the ILC and the amount of calcein released from immobilized liposomes were successfully expressed as a function of the product of the local hydrophobicities of proteins and liposomes, regardless of protein species and the type of the stress conditions applied (denaturant and heating). These findings indicate that lipid membranes have an ability to non-specifically recognize local hydrophobicities of proteins to form stress-mediated supramolecular assemblies with proteins, which may have potential applications in bioprocesses such as protein refolding and separation. ILC was thus found to be a very useful method for the quantitative detection of dynamic protein–liposome interactions triggered by stress conditions.  相似文献   

7.
The permeability barrier properties of lipid bilayers are usually determined by the rate of swelling of multilamellar liposomes or by the exchange of radioactively labeled molecules in sonicated vesicles. The values reported in the literature for the permeability of water and non electrolytes differ according to which method is applied in their determination. In addition, drastic assumptions (i.e. homogeneity of the membrane) are commonly introduced for the interpretation of the phenomenological permeability coefficients. This paper discusses the permeability coefficient considering the departures from the ideality of the membrane system. The non ideal terms can be put in function of measurable quantities such as the excluded volume of the membrane and the hydration degree of the lipid molecules. By means of this formalism it is possible to explain quantitatively the experimental values found for the permeability coefficient of water in sonicated vesicles below and above the phase transition temperature. In addition, different magnitudes of the energies of activation for the permeation of non electrolytes have been found depending on if the liposomes are dispersed in isotonic or hipertonic solutions of a permeant. The formalism described allows to explain such differences in terms of the influence of the solute concentration on the density of the lipid membrane. The reasons for which the simple formalism for homogeneous membranes can not be applied to lipid membranes are discussed in detail.  相似文献   

8.
Properties of scrapie prion protein liposomes   总被引:10,自引:0,他引:10  
Purified scrapie prions contain one identifiable macromolecule, PrP 27-30, which polymerizes into rod-shaped amyloids. The rods can be dissociated with retention of scrapie infectivity upon incorporation of PrP 27-30 into detergent-lipid-protein complexes (DLPC) as well as liposomes. As measured by end-point titration, scrapie infectivity was increased greater than 100-fold upon dissociating the rods into liposomes. The incorporation of PrP 27-30 into liposomes was demonstrated by immunoelectron microscopy using colloidal gold. Detergent extraction of prion liposomes followed by chloroform/methanol extraction resulted in the reappearance of rods, indicating that this process is reversible. Scrapie prion infectivity in rods and liposomes was equally resistant to inactivation by irradiation at 254 nm and was unaltered by exposure to nucleases. A variety of lipids used for producing DLPC and liposomes did not alter infectivity. Fluorescently labeled PrP 27-30 in liposomes was used to study its entry into cultured cells. Unlike the rods which remained as large fluorescent extracellular masses, the PrP 27-30 in liposomes rapidly entered the cells and was seen widely distributed within the interior of the cell. PrP 27-30 is derived by limited proteolysis from a larger protein designated PrP(Sc) which is membrane bound. PrP(Sc) in membrane fractions was solubilized by incorporation in DLPC, thus preventing its aggregation into amyloid rods. The functional solubilization of scrapie prion proteins in DLPC and liposomes offers new approaches to the study of prion structure and the mechanism by which they cause brain degeneration.  相似文献   

9.
In this work, the spectral responses of hypocrellin B (HB) to the microenvironments of various biomolecules were studied, with human serum albumin (HSA), bovine serum albumin (BSA) and ovalbumin (OVA) used as the models for proteins, sodium alginate (SOA) and hyaluronan (HYA) for polysaccharides and liposomes for lipid membranes. Generally, compared to those in aqueous solution, the absorbance and fluorescence of HB were all strengthened in the model systems except for the fluorescence in HYA. Specially, according to the spectral responses of HB, the microenvironments in biomolecules and liposomes could be set in a sequence of hydrophobic grades, i.e., liposomes > proteins > polysaccharides. Further, R(F/A), a parameter defined as the ratio of the fluorescence intensity to the absorbance, was proposed to identify the microenvironment quantitatively. It was found that the R(F/A) could not only distinguish various types of biomolecules but also identify specific binding from nonspecific binding to proteins or polysaccharides.  相似文献   

10.
Cationic liposomes are potentially important gene transfer vehicles, capable of conjugating with anionic DNA by condensation. Flow cytometry was used to examine quantitatively the incorporation of DNA-liposome complex into murine capillary lung endothelial cells. The plasmid DNA, a pSV-beta-galactosidase vector, was covalently labeled with ethidium monoazide by photoactivation. The cationic liposome consisted of egg phosphatidylcholine (90%), cholesterol (5%), and stearylamine (5%). The number of plasmid molecules contained within each cell as a function of exposure time was estimated from fluorescence intensity. Fluorescently labeled plasmid is detectable after 10 min and increases with continued exposure, but at a decreasing rate, up to 2160 min. After 2160 min each cell, on average, contains approximately 10,000 plasmid molecules. Following transfection, a single cell unimodal population was detected by flow cytometry, suggesting that all cells participate in transfection equally. Furthermore, cell cycle analysis indicates that the entry of DNA-liposome complex is independent of cell cycle. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
The lateral dynamics of proteins and lipids in the mammalian plasma membrane are heterogeneous likely reflecting both a complex molecular organization and interactions with other macromolecules that reside outside the plane of the membrane. Several methods are commonly used for characterizing the lateral dynamics of lipids and proteins. These experimental and data analysis methods differ in equipment requirements, labeling complexities, and further oftentimes give different results. It would therefore be very convenient to have a single method that is flexible in the choice of fluorescent label and labeling densities from single molecules to ensemble measurements, that can be performed on a conventional wide-field microscope, and that is suitable for fast and accurate analysis. In this work we show that k-space image correlation spectroscopy (kICS) analysis, a technique which was originally developed for analyzing lateral dynamics in samples that are labeled at high densities, can also be used for fast and accurate analysis of single molecule density data of lipids and proteins labeled with quantum dots (QDs). We have further used kICS to investigate the effect of the label size and by comparing the results for a biotinylated lipid labeled at high densities with Atto647N-strepatvidin (sAv) or sparse densities with sAv-QDs. In this latter case, we see that the recovered diffusion rate is two-fold greater for the same lipid and in the same cell-type when labeled with Atto647N-sAv as compared to sAv-QDs. This data demonstrates that kICS can be used for analysis of single molecule data and furthermore can bridge between samples with a labeling densities ranging from single molecule to ensemble level measurements.  相似文献   

12.
Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.  相似文献   

13.
This study was designed to demonstrate the ability of gas chromatography-atomic emission detection (GC-AED) to quantitatively measure amounts of labeled and unlabeled molecules when they are mixed together with both variable overall concentrations (labeled + unlabeled) and variable isotope ratios. To perform this study, simulations of bioequivalence trials were carried out using 13C stable isotopically labeled molecules (SIL) coadministered with the unlabeled drug to act as biological internal standards. Various methodological approaches are shown and different methods of calculation developed for the quantitative determination of both SIL and unlabeled molecules. The pharmacokinetic parameters experimentally obtained are quite in accordance with the target values and GC-AED appears to be a valuable alternative to mass spectrometry for this kind of trial with concomitant use of labeled and unlabeled molecules.  相似文献   

14.
A new immunoassay method called specific analyte labeling and recapture assay (SALRA) to quantitatively measure protein abundance was developed, and the assay conditions were optimized. The key features of this method include labeling the antigen bound to the capture antibody, eluting the labeled antigen, and recapturing it by the same capture antibody on the detection plate. The reporter molecules on the labeled antigen provide a convenient and reliable means for signal detection. We demonstrated that the dose-response curve of SALRA was comparable to that of sandwich enzyme-linked immunosorbent assay (ELISA) and better than that of the antigen direct labeling method. In addition, multiple proteins can be measured simultaneously by SALRA. Using the SALRA method, the detection limit for most of the cytokines tested was approximately 0.01 ng/ml. Further SALRA tests on interleukin 6 (IL-6) showed the linear dose-response was 3.3 to 0.01 ng/ml, the accuracy of the test was 71 to 91%, the intraassay variation was 3.6 to 7.4%, and the interassay variation was 3.8 to 10.0%. The applications of SALRA include quantitatively measuring proteins for which there are no ELISA tools available and providing a new platform for protein microarrays.  相似文献   

15.
A number of SH-containing proteins or protein derivatives were coupled to small unilamellar liposomes. These were composed of distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylethanolamine (DPPE) and cholesterol (1:1, phospholipid/cholesterol molar ratio) and activated (DPPE moiety) with the heterobifunctional reagents N-hydroxysuccinimide ester of iodoacetic acid (hydroxysuccinimide iodoacetate), N-succinimidyl-4-(2-bromoacetylamino)benzoate (SBAB) or N-succinimidyl-3-(2-pyridyldithio)proprionate (SPDP). DPPE was activated with the reagents before or after its incorporation into liposomes. Protein coupling values varied widely depending on the reagent and the protein used, but were highest in the case of SPDP-activated liposomes and SPDP-modified immunoglobulin G (IgG). Monoclonal anti-Thy1 125I-IgG1-bearing liposomes (SPDP- or SBAB-activated) containing quenched carboxyfluorescein were incubated under a variety of conditions with mouse AKR-A cells expressing the cross-reactive Thy 1.1 antigen. The following observations were made; (a) binding of intact liposomes to the cells at 4 degrees C reached plateau values after about 1 h with at least 70% of the liposomes used being capable of associating with the target cells; (b) binding of liposomes to AKR-A cells was much more pronounced than when using another cell line (EL4-Tc); (c) binding to AKR-A cells could be effected with as little as 1.3 molecules (average) of IgG1 per vesicle; (d) binding was inhibited only modestly by the presence of 50% mouse plasma; (e) stability of IgG1-bearing liposomes in terms of entrapped solute and IgG1 retention in the presence of plasma at 37 degrees C was maintained quantitatively for at least 5.5 h, and by 24 h, 54% of the IgG1 was still associated with the liposomes. AKR mice were injected intravenously with 99mTc-labelled AKR-A cells and 2.5 min later with anti-Thy1 125I-IgG1-bearing liposomes containing quenched carboxyfluorescein and 111In-Ca-DTPA or with similar liposomes devoid of IgG1. In parallel experiments, AKR mice received either of the liposome preparations without previous injection of cells. On the basis of patterns of quenched carboxyfluorescein, 111In and 125I-clearance from the circulation, of 99mTc levels in the blood and of values of 111In in the liver and spleen, it appeared that IgG1-bearing liposomes were capable of binding to their target cells in the vasculature. Such binding accelerated the clearance of interacting moieties (i.e., AKR-A cells and liposomes). The present results suggest that targeting of liposomes to circulating in vivo is feasible.  相似文献   

16.
A general method for measuring interaction of liposome-protein (or potentially small molecules) was developed. This method utilizes biotinylated liposomes to incubate with interactants. Streptavidin-coated paramagnetic resins were then added and the liposomes (along with bound materials) can be quickly separated under a magnetic field or by low speed centrifugation. Subsequently, concentration of unbound materials (in the supernatants) can be directly determined. The described method is particularly useful for proteins or compounds that are not very soluble under certain assay conditions.  相似文献   

17.
18.
19.
The membrane insertion of single bacteriophage Pf3 coat proteins was observed by confocal fluorescence microscopy. Within seconds after addition of the purified and fluorescently labeled protein to liposomes or proteoliposomes containing the purified and reconstituted membrane insertase YidC of Escherichia coli, the translocation of the labeled residue was detected. The 50-amino-acid-long Pf3 coat protein was labeled with Atto520 and inserted into the proteoliposomes. Translocation of the dye into the proteoliposome was revealed by quenching the fluorescence outside of the vesicles. This allowed us to distinguish single Pf3 coat proteins that only bound to the surface of the liposomes from proteins that had inserted into the bilayer and translocated the dye into the lumen. The Pf3 coat protein required the presence of the YidC membrane insertase, whereas mutants that have a membrane-spanning region with an increased hydrophobicity were autonomously inserted into the liposomes without YidC.  相似文献   

20.
Although liposomal nanoparticles are one of the most versatile class of drug delivery systems, stable liposomal formulation of small neutral drug molecules still constitutes a challenge due to the low drug retention of current lipid membrane technologies. In this study, we evaluate the encapsulation and retention of seven nucleoside analog-based drugs in liposomes made of archaea-inspired tetraether lipids, which are known to enhance packing and membrane robustness compared to conventional bilayer-forming lipids. Liposomes comprised of the pure tetraether lipid generally showed improved retention of drugs (up to 4-fold) compared with liposomes made from a commercially available diacyl lipid. Interestingly, we did not find a significant correlation between the liposomal leakage rates of the molecules with typical parameters used to assess lipophilicity of drugs (such logD or topological polar surface area), suggesting that specific structural elements of the drug molecules can have a dominant effect on leakage from liposomes over general lipophilic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号