首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perceptual decisions depend on the ability to exploit available sensory information in order to select the most adaptive option from a set of alternatives. Such decisions depend on the perceptual sensitivity of the organism, which is generally accompanied by a corresponding level of certainty about the choice made. Here, by use of corticocortical paired associative transcranial magnetic stimulation protocol (ccPAS) aimed at inducing plastic changes, we shaped perceptual sensitivity and metacognitive ability in a motion discrimination task depending on the targeted network, demonstrating their functional dissociation. Neurostimulation aimed at boosting V5/MT+-to-V1/V2 back-projections enhanced motion sensitivity without impacting metacognition, whereas boosting IPS/LIP-to-V1/V2 back-projections increased metacognitive efficiency without impacting motion sensitivity. This double-dissociation provides causal evidence of distinct networks for perceptual sensitivity and metacognitive ability in humans.

Transcranial magnetic stimulation targeting cortico-cortical connections reveals a functional dissociation between temporo-visual and parieto-visual re-entrant pathways in humans, controlling perceptual sensitivity and metacognitive abilities respectively, during a visual motion perception task.  相似文献   

2.

Background

Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art.

Methodology/Principal Findings

A new method was presented to estimate the strength of hidden universal structure in a multivariate data set. In this study, I investigated this method in the electrical activities (electroencephalogram signals) of human brain during complex cognition. Two broad groups - artists and non-artists - were studied during the encoding (perception) and retrieval (mental imagery) phases of actual paintings. Universal structure was found to be stronger in visual imagery than in visual perception, and this difference was stronger in artists than in non-artists. Further, this effect was found to be largest in the theta band oscillations and over the prefrontal regions bilaterally.

Conclusions/Significance

Phase transition like dynamics was observed in the electrical activities of human brain during complex cognitive processing, and closeness to phase transition was higher in mental imagery than in real perception. Further, the effect of long-term training on the universal scaling was also demonstrated.  相似文献   

3.
Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se.  相似文献   

4.
Perceptual decisions involve the accumulation of sensory evidence over time, a process that is corrupted by noise [1]. Here, we extend the decision-making framework to crossmodal research [2, 3] and the parallel processing of two distinct signals presented to different sensory modalities like vision and audition. Contrary to the widespread view that multisensory signals are integrated prior to a single decision [4-10], we show that evidence is accumulated for each signal separately and that consequent decisions are flexibly coupled by logical operations. We find that the strong correlation of response latencies from trial to trial is critical to explain the short latencies of multisensory decisions. Most critically, we show that increased noise in multisensory decisions is needed to explain the mean and the variability of response latencies. Precise knowledge of these key factors is fundamental for the study and understanding of parallel decision processes with multisensory signals.  相似文献   

5.
A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners’ judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.  相似文献   

6.
Investigation of perceptual rivalry between conflicting stimuli presented one to each eye can further understanding of the neural underpinnings of conscious visual perception. During rivalry, visual awareness fluctuates between perceptions of the two stimuli. Here, we demonstrate that high-level perceptual grouping can promote rivalry between stimulus pairs that would otherwise be perceived as nonrivalrous. Perceptual grouping was generated with point-light walker stimuli that simulate human motion, visible only as lights placed on the joints. Although such walking figures are unrecognizable when stationary, recognition judgments as complex as gender and identity can accurately be made from animated displays, demonstrating the efficiency with which our visual system can group dynamic local signals into a globally coherent walking figure. We find that point-light walker stimuli presented one to each eye and in different colors and configurations results in strong rivalry. However, rivalry is minimal when the two walkers are split between the eyes or both presented to one eye. This pattern of results suggests that processing animated walker figures promotes rivalry between signals from the two eyes rather than between higher-level representations of the walkers. This leads us to hypothesize that awareness during binocular rivalry involves the integrated activity of high-level perceptual mechanisms in conjunction with lower-level ocular suppression modulated via cortical feedback.  相似文献   

7.
The way we perceive the world is strongly influenced by our expectations. In line with this, much recent research has revealed that prior expectations strongly modulate sensory processing. However, the neural circuitry through which the brain integrates external sensory inputs with internal expectation signals remains unknown. In order to understand the computational architecture of the cortex, we need to investigate the way these signals flow through the cortical layers. This is crucial because the different cortical layers have distinct intra- and interregional connectivity patterns, and therefore determining which layers are involved in a cortical computation can inform us on the sources and targets of these signals. Here, we used ultra-high field (7T) functional magnetic resonance imaging (fMRI) to reveal that prior expectations evoke stimulus-specific activity selectively in the deep layers of the primary visual cortex (V1). These findings are in line with predictive processing theories proposing that neurons in the deep cortical layers represent perceptual hypotheses and thereby shed light on the computational architecture of cortex.

The way we perceive the world is strongly influenced by our expectations, but the neural circuitry through which the brain achieves this remains unknown. A study using ultra-high field fMRI reveals that prior expectations evoke stimulus-specific signals in the deep layers of the primary visual cortex.  相似文献   

8.
Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure. Initially, sensory representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback altered the sensory representations of the neurotypical group toward the novel experimental statistics, while also increasing their total encoding capacity. In contrast, neither total encoding capacity nor its allocation significantly changed in the ASD group. Across both groups, the degree of adaptation was correlated with participants’ initial encoding capacity. These findings highlight substantial deficits in sensory encoding—independent from and potentially in addition to deficits in decoding—in individuals with ASD.

It is increasingly recognized that individuals with Autism Spectrum Disorder (ASD) show anomalies in perception, and these have been recently attributed to altered decoding (i.e. interpretation of sensory signals). This study reveals that independent of these changes, individuals with ASD show upstream deficits in sensory encoding (i.e., how samples are drawn from the environment).  相似文献   

9.

Background

Beyond providing cues about an agent''s intention, communicative actions convey information about the presence of a second agent towards whom the action is directed (second-agent information). In two psychophysical studies we investigated whether the perceptual system makes use of this information to infer the presence of a second agent when dealing with impoverished and/or noisy sensory input.

Methodology/Principal Findings

Participants observed point-light displays of two agents (A and B) performing separate actions. In the Communicative condition, agent B''s action was performed in response to a communicative gesture by agent A. In the Individual condition, agent A''s communicative action was replaced with a non-communicative action. Participants performed a simultaneous masking yes-no task, in which they were asked to detect the presence of agent B. In Experiment 1, we investigated whether criterion c was lowered in the Communicative condition compared to the Individual condition, thus reflecting a variation in perceptual expectations. In Experiment 2, we manipulated the congruence between A''s communicative gesture and B''s response, to ascertain whether the lowering of c in the Communicative condition reflected a truly perceptual effect. Results demonstrate that information extracted from communicative gestures influences the concurrent processing of biological motion by prompting perception of a second agent (second-agent effect).

Conclusions/Significance

We propose that this finding is best explained within a Bayesian framework, which gives a powerful rationale for the pervasive role of prior expectations in visual perception.  相似文献   

10.
Multimodal signals enhance decision making in foraging bumble-bees   总被引:4,自引:0,他引:4  
Multimodal signals are common in nature and have recently attracted considerable attention. Despite this interest, their function is not well understood. We test the hypothesis that multimodal signals improve decision making in receivers by influencing the speed and the accuracy of their decisions. We trained bumble-bees (Bombus impatiens) to discriminate between artificial flowers that differed either in one modality, visual (specifically, shape) or olfactory, or in two modalities, visual plus olfactory. Bees trained on multimodal flowers learned the rewarding flowers faster than those trained on flowers that differed only in the visual modality and, in extinction trials, visited the previously rewarded flowers at a higher rate than bees trained on unimodal flowers. Overall, bees showed a speed-accuracy trade-off; bees that made slower decisions achieved higher accuracy levels. Foraging on multimodal flowers did not affect the slope of the speed-accuracy relationship, but resulted in a higher intercept, indicating that multimodal signals were associated with consistently higher accuracy across range of decision speeds. Our results suggest that bees make more effective decisions when flowers signal in more than one modality, and confirm the importance of studying signal components together rather than separately.  相似文献   

11.
Rapid integration of biologically relevant information is crucial for the survival of an organism. Most prominently, humans should be biased to attend and respond to looming stimuli that signal approaching danger (e.g. predator) and hence require rapid action. This psychophysics study used binocular rivalry to investigate the perceptual advantage of looming (relative to receding) visual signals (i.e. looming bias) and how this bias can be influenced by concurrent auditory looming/receding stimuli and the statistical structure of the auditory and visual signals.Subjects were dichoptically presented with looming/receding visual stimuli that were paired with looming or receding sounds. The visual signals conformed to two different statistical structures: (1) a ‘simple’ random-dot kinematogram showing a starfield and (2) a “naturalistic” visual Shepard stimulus. Likewise, the looming/receding sound was (1) a simple amplitude- and frequency-modulated (AM-FM) tone or (2) a complex Shepard tone. Our results show that the perceptual looming bias (i.e. the increase in dominance times for looming versus receding percepts) is amplified by looming sounds, yet reduced and even converted into a receding bias by receding sounds. Moreover, the influence of looming/receding sounds on the visual looming bias depends on the statistical structure of both the visual and auditory signals. It is enhanced when audiovisual signals are Shepard stimuli.In conclusion, visual perception prioritizes processing of biologically significant looming stimuli especially when paired with looming auditory signals. Critically, these audiovisual interactions are amplified for statistically complex signals that are more naturalistic and known to engage neural processing at multiple levels of the cortical hierarchy.  相似文献   

12.
Delayed comparison tasks are widely used in the study of working memory and perception in psychology and neuroscience. It has long been known, however, that decisions in these tasks are biased. When the two stimuli in a delayed comparison trial are small in magnitude, subjects tend to report that the first stimulus is larger than the second stimulus. In contrast, subjects tend to report that the second stimulus is larger than the first when the stimuli are relatively large. Here we study the computational principles underlying this bias, also known as the contraction bias. We propose that the contraction bias results from a Bayesian computation in which a noisy representation of a magnitude is combined with a-priori information about the distribution of magnitudes to optimize performance. We test our hypothesis on choice behavior in a visual delayed comparison experiment by studying the effect of (i) changing the prior distribution and (ii) changing the uncertainty in the memorized stimulus. We show that choice behavior in both manipulations is consistent with the performance of an observer who uses a Bayesian inference in order to improve performance. Moreover, our results suggest that the contraction bias arises during memory retrieval/decision making and not during memory encoding. These results support the notion that the contraction bias illusion can be understood as resulting from optimality considerations.  相似文献   

13.
Jain A  Fuller S  Backus BT 《PloS one》2010,5(10):e13295
The visual system can learn to use information in new ways to construct appearance. Thus, signals such as the location or translation direction of an ambiguously rotating wire frame cube, which are normally uninformative, can be learned as cues to determine the rotation direction. This perceptual learning occurs when the formerly uninformative signal is statistically associated with long-trusted visual cues (such as binocular disparity) that disambiguate appearance during training. In previous demonstrations, the newly learned cue was intrinsic to the perceived object, in that the signal was conveyed by the same image elements as the object itself. Here we used extrinsic new signals and observed no learning. We correlated three new signals with long-trusted cues in the rotating cube paradigm: one crossmodal (an auditory signal) and two within modality (visual). Cue recruitment did not occur in any of these conditions, either in single sessions or in ten sessions across as many days. These results suggest that the intrinsic/extrinsic distinction is important for the perceptual system in determining whether it can learn and use new information from the environment to construct appearance. Extrinsic cues do have perceptual effects (e.g. the "bounce-pass" illusion and McGurk effect), so we speculate that extrinsic signals must be recruited for perception, but only if certain conditions are met. These conditions might specify the age of the observer, the strength of the long-trusted cues, or the amount of exposure to the correlation.  相似文献   

14.
A prevailing theory proposes that the brain''s two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers'' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals'' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers'' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways.  相似文献   

15.
In the past two decades, sensory neuroscience has moved from describing response properties to external stimuli in cerebral cortex to establishing connections between neuronal activity and sensory perception. The seminal studies by Newsome, Movshon and colleagues in the awake behaving macaque firmly link single cells in extrastriate area V5/MT and perception of motion. A decade later, extrastriate visual cortex appears awash with neuronal correlates for many different perceptual tasks. Examples are attentional signals, choice signals for ambiguous images, correlates for binocular rivalry, stereo and shape perception, and so on. These diverse paradigms are aimed at elucidating the neuronal code for perceptual processes, but it has been little studied how they directly compare or even interact. In this paper, I explore to what degree the measured neuronal signals in V5/MT for choice and attentional paradigms might reflect a common neuronal mechanism for visual perception.  相似文献   

16.
This study examined effects of hand movement on visual perception of 3-D movement. I used an apparatus in which a cursor position in a simulated 3-D space and the position of a stylus on a haptic device could coincide using a mirror. In three experiments, participants touched the center of a rectangle in the visual display with the stylus of the force-feedback device. Then the rectangle''s surface stereoscopically either protruded toward a participant or indented away from the participant. Simultaneously, the stylus either pushed back participant''s hand, pulled away, or remained static. Visual and haptic information were independently manipulated. Participants judged whether the rectangle visually protruded or dented. Results showed that when the hand was pulled away, subjects were biased to perceive rectangles indented; however, when the hand was pushed back, no effect of haptic information was observed (Experiment 1). This effect persisted even when the cursor position was spatially separated from the hand position (Experiment 2). But, when participants touched an object different from the visual stimulus, this effect disappeared (Experiment 3). These results suggest that the visual system tried to integrate the dynamic visual and haptic information when they coincided cognitively, and the effect of haptic information on visually perceived depth was direction-dependent.  相似文献   

17.
Noninformative vision improves haptic spatial perception   总被引:10,自引:0,他引:10  
Previous studies have attempted to map somatosensory space via haptic matching tasks and have shown that individuals make large and systematic matching errors, the magnitude and angular direction of which vary systematically through the workspace. Based upon such demonstrations, it has been suggested that haptic space is non-Euclidian. This conclusion assumes that spatial perception is modality specific, and it largely ignores the fact that tactile matching tasks involve active, exploratory arm movements. Here we demonstrate that, when individuals match two bar stimuli (i.e., make them parallel) in circumstances favoring extrinsic (visual) coordinates, providing noninformative visual information significantly increases the accuracy of haptic perception. In contrast, when individuals match the same bar stimuli in circumstances favoring the coding of movements in intrinsic (limb-based) coordinates, providing identical noninformative visual information either has no effect or leads to the decreased accuracy of haptic perception. These results are consistent with optimal integration models of sensory integration in which the weighting given to visual and somatosensory signals depends upon the precision of the visual and somatosensory information and provide important evidence for the task-dependent integration of visual and somatosensory signals during the construction of a representation of peripersonal space.  相似文献   

18.
Perceptual aftereffects following adaptation to simple stimulus attributes (e.g., motion, color) have been studied for hundreds of years. A striking recent discovery was that adaptation also elicits contrastive aftereffects in visual perception of complex stimuli and faces [1-6]. Here, we show for the first time that adaptation to nonlinguistic information in voices elicits systematic auditory aftereffects. Prior adaptation to male voices causes a voice to be perceived as more female (and vice versa), and these auditory aftereffects were measurable even minutes after adaptation. By contrast, crossmodal adaptation effects were absent, both when male or female first names and when silently articulating male or female faces were used as adaptors. When sinusoidal tones (with frequencies matched to male and female voice fundamental frequencies) were used as adaptors, no aftereffects on voice perception were observed. This excludes explanations for the voice aftereffect in terms of both pitch adaptation and postperceptual adaptation to gender concepts and suggests that contrastive voice-coding mechanisms may routinely influence voice perception. The role of adaptation in calibrating properties of high-level voice representations indicates that adaptation is not confined to vision but is a ubiquitous mechanism in the perception of nonlinguistic social information from both faces and voices.  相似文献   

19.
In the polyembryonic wasp Copidosoma floridanum, females commonly lay one male and one female egg in a lepidopteran host. Both sexes proliferate clonally within the growing host larva. Distinct larval castes develop from each wasp egg, the majority being ‘reproductives’ plus some ‘soldiers’ which sacrifice reproduction and attack competitors. Maturing mixed sex broods are usually female biased, as expected when intra-brood mating is common. Pre-mating dispersal followed by outbreeding is expected to increase sexual conflict over brood sex ratios and result in greater soldier attack rates. Owing to sexually asymmetric relatedness, intra-brood conflicts are expected to be resolved primarily via female soldier attack. We observed soldier behaviour in vitro to test whether lower intra-brood relatedness (siblings from either within-strain or between-strain crosses were presented) increased inter-sexual aggression by female as well as male soldiers. As found in prior studies, females were more aggressive than males but, contrary to expectations and previous empirical observations, soldiers of both sexes showed more aggression towards more closely related embryos. We speculate that lower intra-brood relatedness indicates maternal outbreeding and may suggest a rarity of mating opportunities for reproductives maturing from the current brood, which may enhance the value of opposite sex brood-mates, or that higher aggression towards relatives may be a side-effect of mechanisms to discriminate heterospecific competitors.  相似文献   

20.
1. A key aspect of the ecology and evolution of adaptive prey responses to predator risk is the timing by which the former develop a defensive trait in response to inducing signals released by the latter. This property, called reactivity, has been shown to affect population stability and persistence. 2. Theoretically, the minimal predator density required by prey to exhibit induced defences is expected to increase with the effectiveness of the defence and decrease with its cost. Likewise, the time required for the prey population to exhibit an induced defence is expected to increase together with cost. 3. The freshwater rotifers Brachionus calyciflorus and B. havanaensis and their predator Asplanchna brightwelli were used to test the hypothesis that prey species exhibiting defences that offer a larger fitness benefit and lower fitness cost are more reactive to predator signals, in terms of requiring shorter exposure time and lower signal concentration to trigger a morphological defence reaction. 4. Our results showed that both prey species exhibited costly and effective defences after induction by predator infochemicals. Faster reactions were observed at higher levels of predator cues. Nevertheless, the observed relationship between reactivity and benefit/cost of defences did not agree with our expectations. 5. To our knowledge, this is the first study in which the timing of induction of morphological defences is experimentally assessed over a gradient of risk signals. We propose new research directions to disentangle the mechanisms and project the consequences of prey decisions at the morphological level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号