首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deterministic sampling was used to numerically evaluate the expected log-likelihood surfaces of QTL-marker linkage models in large pedigrees with simple structures. By calculating the expected values of likelihoods, questions of power of experimental designs, bias in parameter estimates, approximate lower-bound standard errors of estimates and correlations among estimates, and suitability of statistical models were addressed. Examples illustrated that bracket markers around the QTL approximately halved the standard error of the recombination fraction between the QTL and the marker, although they did not affect the standard error of the QTL's effect, that overestimation of the distance between the markers caused overestimation of the distance between the QTL and marker, that more parameters in the model did not affect the accuracy of parameter estimates, that there was a moderate positive correlation between the estimates of the QTL effect and its recombination distance from the marker, and that selective genotyping did not introduce bias into the estimates of the parameters. The method is suggested as a useful tool for exploring the power and accuracy of QTL linkage experiments, and the value of alternative statistical models, whenever the likelihood of the model can be written explictly.  相似文献   

2.
Once genetic linkage has been identified for a complex disease, the next step is often association analysis, in which single-nucleotide polymorphisms (SNPs) within the linkage region are genotyped and tested for association with the disease. If a SNP shows evidence of association, it is useful to know whether the linkage result can be explained, in part or in full, by the candidate SNP. We propose a novel approach that quantifies the degree of linkage disequilibrium (LD) between the candidate SNP and the putative disease locus through joint modeling of linkage and association. We describe a simple likelihood of the marker data conditional on the trait data for a sample of affected sib pairs, with disease penetrances and disease-SNP haplotype frequencies as parameters. We estimate model parameters by maximum likelihood and propose two likelihood-ratio tests to characterize the relationship of the candidate SNP and the disease locus. The first test assesses whether the candidate SNP and the disease locus are in linkage equilibrium so that the SNP plays no causal role in the linkage signal. The second test assesses whether the candidate SNP and the disease locus are in complete LD so that the SNP or a marker in complete LD with it may account fully for the linkage signal. Our method also yields a genetic model that includes parameter estimates for disease-SNP haplotype frequencies and the degree of disease-SNP LD. Our method provides a new tool for detecting linkage and association and can be extended to study designs that include unaffected family members.  相似文献   

3.
It has been demonstrated in the literature that the transmission/disequilibrium test (TDT) has higher power than the affected-sib-pair (ASP) mean test when linkage disequilibrium (LD) is strong but that the mean test has higher power when LD is weak. Thus, for ASP data, it seems clear that the TDT should be used when LD is strong but that the mean test or other linkage tests should be used when LD is weak or absent. However, in practice, it may be difficult to follow such a guideline, because the extent of LD is often unknown. Even with a highly dense genetic-marker map, in which some markers should be located near the disease-predisposing mutation, strong LD is not inevitable. Besides the genetic distance, LD is also affected by many factors, such as the allelic heterogeneity at the disease locus, the initial LD, the allelic frequencies at both disease locus and marker locus, and the age of the mutation. Therefore, it is of interest to develop methods that are adaptive to the extent of LD. In this report, we propose a disequilibrium maximum-binomial-likelihood (DMLB) test that incorporates LD in the maximum-binomial-likelihood (MLB) test. Examination of the corresponding score statistics shows that this method adaptively combines two sources of information: (a) the identity-by-descent (IBD) sharing score, which is informative for linkage regardless of the existence of LD, and (b) the contrast between allele-specific IBD sharing score, which is informative for linkage only in the presence of LD. For ASP data, the proposed test has higher power than either the TDT or the mean test when the extent of LD ranges from moderate to strong. Only when LD is very weak or absent is the DMLB slightly less powerful than the mean test; in such cases, the TDT has essentially no power to detect linkage. Therefore, the DMLB test is an interesting approach to linkage detection when the extent of LD is unknown.  相似文献   

4.
The purpose of this work is to quantify the effects that errors in genotyping have on power and the sample size necessary to maintain constant asymptotic Type I and Type II error rates (SSN) for case-control genetic association studies between a disease phenotype and a di-allelic marker locus, for example a single nucleotide polymorphism (SNP) locus. We consider the effects of three published models of genotyping errors on the chi-square test for independence in the 2 x 3 table. After specifying genotype frequencies for the marker locus conditional on disease status and error model in both a genetic model-based and a genetic model-free framework, we compute the asymptotic power to detect association through specification of the test's non-centrality parameter. This parameter determines the functional dependence of SSN on the genotyping error rates. Additionally, we study the dependence of SSN on linkage disequilibrium (LD), marker allele frequencies, and genotyping error rates for a dominant disease model. Increased genotyping error rate requires a larger SSN. Every 1% increase in sum of genotyping error rates requires that both case and control SSN be increased by 2-8%, with the extent of increase dependent upon the error model. For the dominant disease model, SSN is a nonlinear function of LD and genotyping error rate, with greater SSN for lower LD and higher genotyping error rate. The combination of lower LD and higher genotyping error rates requires a larger SSN than the sum of the SSN for the lower LD and for the higher genotyping error rate.  相似文献   

5.
Summary To maximize parameter estimation efficiency and statistical power and to estimate epistasis, the parameters of multiple quantitative trait loci (QTLs) must be simultaneously estimated. If multiple QTL affect a trait, then estimates of means of QTL genotypes from individual locus models are statistically biased. In this paper, I describe methods for estimating means of QTL genotypes and recombination frequencies between marker and quantitative trait loci using multilocus backcross, doubled haploid, recombinant inbred, and testcross progeny models. Expected values of marker genotype means were defined using no double or multiple crossover frequencies and flanking markers for linked and unlinked quantitative trait loci. The expected values for a particular model comprise a system of nonlinear equations that can be solved using an interative algorithm, e.g., the Gauss-Newton algorithm. The solutions are maximum likelihood estimates when the errors are normally distributed. A linear model for estimating the parameters of unlinked quantitative trait loci was found by transforming the nonlinear model. Recombination frequency estimators were defined using this linear model. Certain means of linked QTLs are less efficiently estimated than means of unlinked QTLs.  相似文献   

6.
The posterior probability of linkage (PPL) statistic has been developed as a method for the rigorous accumulation of evidence for or against linkage allowing for both intra- and inter-sample heterogeneity. To date, the method has assumed linkage equilibrium between alleles at the trait locus and the marker locus. We now generalize the PPL to allow for linkage disequilibrium (LD), by incorporating variable phase probabilities into the underlying linkage likelihood. This enables us to recover the marginal posterior density of the recombination fraction, integrating out nuisance parameters of the trait model, including the locus heterogeneity (admixture) parameter, as well as a vector of LD parameters. The marginal posterior density can then be updated across data subsets or new data as they become available, while allowing parameters of the trait model to vary between data sets. The method applies immediately to general pedigree structures and to markers with multiple alleles. In the case of SNPs, the likelihood is parameterized in terms of the standard single LD parameter D'; and it therefore affords a mechanism for estimation of D' between the marker and the trait, again, without fixing the parameters of the trait model and allowing for updating across data sets. It is even possible to allow for a different associated allele in different populations, while accumulating information regarding the strength of LD. While a computationally efficient implementation for multi-allelic markers is still in progress, we have implemented a version of this new LD-PPL for SNPs and evaluated its performance in nuclear families. Our simulations show that LD-PPLs tend to be larger than PPLs (stronger evidence in favor of linkage/LD) with increased LD level, under a variety of generating models; while in the absence of linkage and LD, LD-PPLs tend to be smaller than PPLs (stronger evidence against linkage). The estimate of D' also behaves well even in relatively small, heterogeneous samples.  相似文献   

7.
Luo ZW  Wu CI 《Genetics》2001,158(4):1785-1800
Linkage disequilibrium is an important topic in evolutionary and population genetics. An issue yet to be settled is the theory required to extend the linkage disequilibrium analysis to complex traits. In this study, we present theoretical analysis and methods for detecting or estimating linkage disequilibrium (LD) between a polymorphic marker locus and any one of the loci affecting a complex dichotomous trait on the basis of samples randomly or selectively collected from natural populations. Statistical properties of these methods were investigated and their powers were compared analytically or by use of Monte Carlo simulations. The results show that the disequilibrium may be detected with a power of 80% by using phenotypic records and marker genotype when both the trait and marker variants are common (30%) and the LD is relatively high (40-100% of the theoretical maximum). The maximum-likelihood approach provides accurate estimates of the model parameters as well as detection of linkage disequilibrium. The likelihood method is preferred for its higher power and reliability in parameter estimation. The approaches developed in this article are also compared to those for analyzing a continuously distributed quantitative trait. It is shown that a larger sample size is required for the dichotomous trait model to obtain the same level of power in detecting linkage disequilibrium as the continuous trait analysis. Potential use of these estimates in mapping the trait locus is also discussed.  相似文献   

8.
Although the effects of linkage disequilibrium (LD) on partition of genetic variance have received attention in quantitative genetics, there has been little discussion on how this phenomenon affects attribution of variance to a given locus. This paper reinforces the point that standard metrics used for assessing the contribution of a locus to variance can be misleading when there is linkage LD and that factors such as distribution of effects and of allelic frequencies over loci, or existence of frequency-dependent effects, play a role as well. An apparently new metric is proposed for measuring how much of the variability is contributed by a locus when LD exists. Effects of intervening factors, such as type and extent of LD, number of loci, distribution of effects, and of allelic frequencies over loci, as well as a model for generating frequency-dependent effects, are illustrated via hypothetical simulation scenarios. Implications on the interpretation of genome-wide association studies (GWAS), as typically carried out in human genetics, where single marker regression and the assumption of a sole quantitative trait locus (QTL) are common, are discussed. It is concluded that the standard attributions to variance contributed by a single QTL from a GWAS analysis may be misleading, conceptually and statistically, when a trait is complex and affected by sets of many genes in linkage disequilibrium. Yet another factor to consider in the “missing heritability” saga?.  相似文献   

9.
Fan R  Jung J 《Human heredity》2003,56(4):166-187
This paper proposes variance component models for high resolution joint linkage disequilibrium (LD) and linkage mapping of quantitative trait loci (QTL) based on sibship data; this can include population data if independent individuals are treated as single sibships. One application of these models is late onset complex disease gene mapping, when parental data are not available. The models simultaneously incorporate both LD and linkage information. The LD information is contained in mean coefficients of sibship data. The linkage information is contained in the variance-covariance matrices of trait values for sibships with at least two siblings. We derive formulas for calculating the probability of sharing two trait alleles identical by descent (IBD) for sibpairs in interval mapping of QTL; this is the coefficient of dominant variance of the trait covariance of sibpairs on major QTL. To investigate the performance of the formulas, we calculate the numerical values via the formulas and get satisfactory approximations. We compare the power and sample sizes for both LD and linkage mapping. By simulation and theoretical analysis, we compare the results with those of Fulker and Abecasis "AbAw" approach. It is well known that the resolution of linkage analysis can be low for complex disease gene mapping. LD mapping, on the other hand, can increase mapping precision and is useful in high resolution mapping. Linkage analysis is less sensitive to population subdivisions and admixtures. The level of LD is sensitive to population stratification which may easily lead to spurious association. Performing a joint analysis of LD and linkage mapping can help to overcome the limits of both approaches. Moreover, the advantages of the two complementary strategies can be utilized maximally. In practice, linkage analysis may be performed using pedigree data to identify suggestive linkage between markers and trait loci based on a sparse marker map. In the presence of linkage, joint LD and linkage mapping can be carried out to do fine gene mapping based on a dense genetic map using both pedigree and population data. Population and pedigree data of any type can be combined to perform a joint analysis of high resolution LD and linkage mapping of QTL by generalizing the method.  相似文献   

10.
The genetic basis of the transmission disequilibrium test (TDT) for two-marker loci is explored from first principles. In this case, parents doubly heterozygous for a given haplotype at the pair of marker loci that are each in linkage disequilibrium with the disease gene with the further possibility of a second-order linkage disequilibrium are considered. The number of times such parents transmit the given haplotype to their affected offspring is counted and compared with the frequencies of haplotypes that are not transmitted. This is done separately for the coupling and repulsion phases of doubly heterozygous genotypes. Expectations of the counts for each of the sixteen cells possible with four-marker gametic types (transmitted vs not transmitted) are derived. Based on a test of symmetry in a square 4 × 4 contingency table, chi-square tests are proposed for the null hypothesis of no linkage between the markers and the disease gene. The power of the tests is discussed in terms of the corresponding non-centrality parameters for the alternative hypothesis that both the markers are linked with the disease locus. The results indicate that the power increases with the decrease in recombination probability and that it is higher for a lower frequency of the disease gene. Taking a pair of markers in an interval for exploring the linkage with the disease gene seems to be more informative than the single-marker case since the values of the non-centrality parameters tend to be consistently higher than their counterparts in the single-marker case. Limitations of the proposed test are also discussed.  相似文献   

11.
The genetic basis of the transmission disequilibrium test (TDT) for two-marker loci is explored from first principles. In this case, parents doubly heterozygous for a given haplotype at the pair of marker loci that are each in linkage disequilibrium with the disease gene with the further possibility of a second-order linkage disequilibrium are considered. The number of times such parents transmit the given haplotype to their affected offspring is counted and compared with the frequencies of haplotypes that are not transmitted. This is done separately for the coupling and repulsion phases of doubly heterozygous genotypes. Expectations of the counts for each of the sixteen cells possible with four-marker gametic types (transmitted vs not transmitted) are derived. Based on a test of symmetry in a square 4 x 4 contingency table, chi-square tests are proposed for the null hypothesis of no linkage between the markers and the disease gene. The power of the tests is discussed in terms of the corresponding non-centrality parameters for the alternative hypothesis that both the markers are linked with the disease locus. The results indicate that the power increases with the decrease in recombination probability and that it is higher for a lower frequency of the disease gene. Taking a pair of markers in an interval for exploring the linkage with the disease gene seems to be more informative than the single-marker case since the values of the non-centrality parameters tend to be consistently higher than their counterparts in the single-marker case. Limitations of the proposed test are also discussed.  相似文献   

12.
Statistics for linkage disequilibrium (LD), the non-random association of alleles at two loci, depend on the frequencies of the alleles at the loci under consideration. Here, we examine the r(2) measure of LD and its mathematical relationship to allele frequencies, quantifying the constraints on its maximum value. Assuming independent uniform distributions for the allele frequencies of two biallelic loci, we find that the mean maximum value of r(2) is approximately 0.43051, and that r(2) can exceed a threshold of 4/5 in only approximately 14.232% of the allele frequency space. If one locus is assumed to have known allele frequencies--the situation in an association study in which LD between a known marker locus and an unknown trait locus is of interest--we find that the mean maximum value of r(2) is greatest when the known locus has a minor allele frequency of approximately 0.30131. We find that in 1/4 of the space of allowed values of minor allele frequencies and haplotype frequencies at a pair of loci, the unconstrained maximum r(2) allowing for the possibility of recombination between the loci exceeds the constrained maximum assuming that no recombination has occurred. Finally, we use r(max)(2) to examine the connection between r(2) and the D(') measure of linkage disequilibrium, finding that r(2)/r(max)(2)=D('2) for approximately 72.683% of the space of allowed values of (p(a),p(b),p(ab)). Our results concerning the properties of r(2) have the potential to inform the interpretation of unusual LD behavior and to assist in the design of LD-based association-mapping studies.  相似文献   

13.
A Gibbs sampling approach to linkage analysis.   总被引:9,自引:0,他引:9  
We present a Monte Carlo approach to estimation of the recombination fraction theta and the profile likelihood for a dichotomous trait and a single marker gene with 2 alleles. The method is an application of a technique known as 'Gibbs sampling', in which random samples of each of the unknowns (here genotypes, theta and nuisance parameters, including the allele frequencies and the penetrances) are drawn from their posterior distributions, given the data and the current values of all the other unknowns. Upon convergence, the resulting samples derive from the marginal distribution of all the unknowns, given only the data, so that the uncertainty in the specification of the nuisance parameters is reflected in the variance of the posterior distribution of theta. Prior knowledge about the distribution of theta and the nuisance parameters can be incorporated using a Bayesian approach, but adoption of a flat prior for theta and point priors for the nuisance parameters would correspond to the standard likelihood approach. The method is easy to program, runs quickly on a microcomputer, and could be generalized to multiple alleles, multipoint linkage, continuous phenotypes and more complex models of disease etiology. The basic approach is illustrated by application to data on cholesterol levels and an a low-density lipoprotein receptor gene in a single large pedigree.  相似文献   

14.
Gao G  Hoeschele I 《Genetics》2005,171(1):365-376
Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo (MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods yield almost identical results for the estimation of QTL positions and variance parameters, while the new method is much more computationally efficient than the MCMC approach for large pedigrees and large numbers of loci. The proposed method is also compared with an exact method (Merlin) in small simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage analysis, which improves the power and accuracy of QTL mapping.  相似文献   

15.
Interest in searching for genetic linkage between diseases and marker loci has been greatly increased by the recent introduction of DNA polymorphisms. However, even for the most well-behaved Mendelian disorders, those with clear-cut mode of inheritance, complete penetrance, and no phenocopies, genetic heterogeneity may exist; that is, in the population there may be more than one locus that can determine the disease, and these loci may not be linked. In such cases, two questions arise: (1) What sample size is necessary to detect linkage for a genetically heterogeneous disease? (2) What sample size is necessary to detect heterogeneity given linkage between a disease and a marker locus? We have answered these questions for the most important types of matings under specified conditions: linkage phase known or unknown, number of alleles involved in the cross at the marker locus, and different numbers of affected and unaffected children. In general, the presence of heterogeneity increases the recombination value at which lod scores peak, by an amount that increases with the degree of heterogeneity. There is a corresponding increase in the number of families necessary to establish linkage. For the specific case of backcrosses between disease and marker loci with two alleles, linkage can be detected at recombination fractions up to 20% with reasonable numbers of families, even if only half the families carry the disease locus linked to the marker. The task is easier if more than two informative children are available or if phase is known. For recessive diseases, highly polymorphic markers with four different alleles in the parents greatly reduce the number of families required.  相似文献   

16.
针对人类疾病基因的精细定位,本文利用稠密的标记位点,通过比较标记的熵和条件熵,给出了一个基于熵的指数。该指数可以度量标记基因和性状位点间连锁不平衡(LD)程度。该指数的特性是它不依赖于标记基因的频率。同时它对应疾病易感位点(DSL)精细定位的哈迪-温伯格不平衡(HWD)指数。通过计算机模拟,文章调查了不同遗传参数下该指数的性质。模拟结果表明该指数用作疾病易感位点精细定位是有效的。  相似文献   

17.
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance.  相似文献   

18.
Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a–c, G2a–d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (P<0.001) in this association panel. The LD level for linked markers is significantly higher than that for unlinked markers, suggesting that physical linkage strongly influences LD in this panel, and LD level was elevated when the panel was classified into groups and subgroups. The LD decay analysis for several chromosomes showed that different chromosomes showed a notable change in LD decay distances for the same gene pool. Based on the disease nursery and greenhouse environment, 42 marker loci associated with Verticillium wilt resistance were identified through association mapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt resistance in cotton.  相似文献   

19.
The rapid development of a dense single-nucleotide-polymorphism marker map has stimulated numerous studies attempting to characterize the magnitude and distribution of background linkage disequilibrium (LD) within and between human populations. Although genotyping errors are an inherent problem in all LD studies, there have been few systematic investigations documenting their consequences on estimates of background LD. Therefore, we derived simple deterministic formulas to investigate the effect that genotyping errors have on four commonly used LD measures-D', r, Q, and d-in studies of background LD. We have found that genotyping error rates as small as 3% can have serious affects on these LD measures, depending on the allele frequencies and the assumed error model. Furthermore, we compared the robustness of D', r, Q, and d, in the presence of genotyping errors. In general, Q and d are more robust than D' and r, although exceptions do exist. Finally, through stochastic simulations, we illustrate how genotyping errors can lead to erroneous inferences when measures of LD between two samples are compared.  相似文献   

20.
郭伟  冯荣锦 《遗传学报》2006,33(1):12-18
在渐近混合模型中,混合现象发生在每一世代,通过对其混合连锁不平衡的理论分析,发现混合连锁不平衡与两个子群体间的基因频率差成正比。基于这一点,构造了一个对重组率严格单调的函数(△ker=△/(p1-p2),其中△代表连锁不平衡),进而据此推断标记基因座与疾病基因座的遗传连锁。应用人类基因组上不连锁的标记基因提供的连锁不平衡信息,基于病人组数据构造了一个准似然比统计量。模拟结果显示,此检验可用于精确的基因定位。文章亦讨论了参数对检验的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号