首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anthropogenic climate change is altering temperature regimes for coastal marine fishes. However, given that temperature changes will not occur in isolation of other stressors, it is necessary to explore the potential consequences of stress on the thermal tolerances and preferences of tropical marine fish in order to understand the thresholds for survival, and predict the associated coastal ecological consequences. In this study, we used exogenous cortisol injections to investigate the effects of a thermal challenge on checkered puffers (Sphoeroides testudineus) as a secondary stressor. There were no significant differences between control and cortisol-treated fish 48 h following cortisol treatment for swimming ability (using a chase to exhaustion protocol), blood glucose concentrations or standard metabolic rate. In the lab, control and cortisol-treated puffers were exposed to ambient (29.1±1.5 °C), ambient +5 °C (heat shock) and ambient −5 °C (cold shock) for 4 h and to evaluate the consequences of abrupt temperature change on puff performance and blood physiology. Following cold shock, control fish exhibited increases in cortisol levels and weak ‘puff’ performance. Conversely, fish dosed with cortisol exhibited consistently high cortisol levels independent of thermal treatment, although there was a trend for an attenuated cortisol response in the cortisol-treated fish to the cold shock treatment. A 20-day complementary field study conducted in the puffer’s natural habitat, a tidal creek in Eleuthera, The Bahamas, revealed that cortisol-injected fish selected significantly cooler temperatures, measured using accumulated thermal units, when compared to controls. These results, and particularly the discrepancies between consequences documented in the laboratory and the ecological trends observed in the field, highlight the need to establish the link between laboratory and field data to successfully develop management policies and conservation initiatives with regards to anthropogenic climate change.  相似文献   

2.
The tropical butterfly, Bicyclus anynana, exhibits seasonal polyphenism. The wet season form has large eyespots and a pale band while these characters are much less conspicuous or absent in the dry season form. This plasticity is induced in the laboratory by use of a standard series of constant temperatures in the larval stage yielding a continuous norm of reaction. Butterflies in this study were reared from hatchling larvae in seven regimes which differed with respect to thermoperiod or photoperiod. The effect of rearing treatment on the phenotypic plasticity of the adult wing pattern, on life history traits and on larval feeding rhythms was investigated. Photoperiod had little effect except that constant light produced a higher mortality and tended to produce a longer development time. Thermoperiod had a major effect on the life history traits in comparison to a constant temperature regime with the same daily mean: development time was shorter with higher growth rates. The faster development was associated with a substantial shift in the wing pattern towards the wet season form. Larvae feed mostly at night both under constant and thermoperiod (cool nights) conditions. The results are discussed with respect to the necessity of matching field and laboratory environments in studies of norms of reaction or of life history traits where the adaptive significance of the variation is important. Fluctuating conditions in nature, especially with respect to thermoperiod, must be taken into account.  相似文献   

3.
Limberger R  Wickham SA 《PloS one》2011,6(12):e29071
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation.  相似文献   

4.
Predators influence prey populations both by consuming individual prey, and by inducing changes in prey behaviour that limit reproduction and survival. Because prey trade-off predation risk for forageing gains, the magnitude of predators' non-consumptive effects should depend on resource availability. Studies of non-consumptive effects generally adopt either of two strategies: (i) maintaining a static ration of the prey's resources; and (ii) using resource populations that vary dynamically in response to prey behaviour. Contrasting these experimental designs using meta-analysis, we evaluated whether resource dynamics influence the magnitude of non-consumptive effects on prey growth, survival, fecundity, population density, forageing rate and habitat use. Predators had a more negative effect on prey demography in dynamic- vs. static-resource experiments. Our results highlight the importance of resource dynamics in mediating the magnitude of non-consumptive effects of predators on prey, and illustrate the often-unintended impacts of experimental design on estimates of effect size in ecological interactions.  相似文献   

5.
Opportunistic, fugitive or pioneer species are species that posses life-history characteristics that allow them to respond quickly to disturbances. Their abundance during the early stages of succession is central to ecological models of benthic soft-sediment succession and these species can play important roles in affecting subsequent successional trajectories. Nevertheless, numerous studies have demonstrated seemingly random patterns of opportunistic responses following disturbance, questioning the generality of currently accepted successional models. In this paper we provide examples from two case studies and argue that the spatial scale or magnitude of disturbance is key to the development of opportunistic responses, and that the scale of disturbance may be particularly important in determining (a) the levels of resources made available and (b) the magnitude of release from competitive interactions, which permit opportunists to flourish.  相似文献   

6.
McCoy MW 《Oecologia》2007,153(4):871-878
The benefits in survival gained from predator-induced phenotypes often come at a cost to other components of fitness. Therefore, the level of expression of an induced phenotype should mirror the level of risk in the environment. When a predator exhibits a saturating functional response the risk of mortality to a given prey decreases as prey density increases. Therefore, for a given predator threat, investment in defense should be lower in prey at high density relative to those at low density. In this study, I test whether the magnitude of predator-induced morphological plasticity decreases with increasing conspecific density by exposing pine woods tree frog (Hyla femoralis) tadpoles at three different densities to predators (present or absent) in a factorial experiment. Tadpole morphology was not affected by changes in density in the absence of predators. However, predators had a significant, density-dependent effect on tadpole morphology. Specifically, the magnitude of morphological response was graded and larger for animals in the low density (high risk) environment. This study demonstrates that tadpoles can modulate phenotypic plasticity in response to mortality risk as a function of both the density of conspecifics and chemical cues from predators, which suggests that they are able to detect and respond to fine-scale changes in the threat environment. In addition, this study highlights the need for analytical approaches that allow morphological plasticity studies to elucidate allometric relationships in addition to simply quantifying size-corrected traits. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Identifying mechanisms of adaptation to variable environments is essential in developing a comprehensive understanding of evolutionary dynamics in natural populations. Phenotypic plasticity allows for phenotypic change in response to changes in the environment, and as such may play a major role in adaptation to environmental heterogeneity. Here, the plasticity of stress response in Drosophila melanogaster originating from two distinct geographic regions and ecological habitats was examined. Adults were given a short‐term, 5‐day exposure to combinations of temperature and photoperiod to elicit a plastic response for three fundamental aspects of stress tolerance that vary adaptively with geography. This was replicated both in the laboratory and in outdoor enclosures in the field. In the laboratory, geographic origin was the primary determinant of the stress response. Temperature and the interaction between temperature and photoperiod also significantly affected stress resistance. In the outdoor enclosures, plasticity was distinct among traits and between geographic regions. These results demonstrate that short‐term exposure of adults to ecologically relevant environmental cues results in predictable effects on multiple aspects of fitness. These patterns of plasticity vary among traits and are highly distinct between the two examined geographic regions, consistent with patterns of local adaptation to climate and associated environmental parameters.  相似文献   

8.
Eight species of snubnose darters (genus Etheostoma) were observed and filmed to compare the spawning behavior in the field and in aquaria. These darters exhibited substrate searching, male lateral quivers, and head jabbing behavior in both the field and aquaria. In streams, snubnose darters attached eggs singly to cobble and larger rock substrates, while in aquaria several species were found to attach eggs to fine aquarium gravel as well as cobble and larger rocks. In general, these results support previous aquarium studies of snubnose darters. Information on spawning behavior in snubnose darters as well as darters of the closely related subgenus Etheostoma is synthesized in order to address the phylogenetic affinities of some species in this group of fish.  相似文献   

9.
Shanks  Alan L. 《Behavioral ecology》2002,13(4):467-471
Lottia gigantea, the owl limpet, is an algal gardener. Territorial individuals actively defend gardens, which consist of clearedareas in the intertidal zone upon which a thick algal filmdevelops and upon which the territory holder feeds. Smaller,nonterritory holders raid these gardens and graze the algalfilm. Territorial individuals must obtain an adequate ration without compromising the productivity of the garden. In contrast,a nonterritory holder grazing on another limpet's territorymust obtain an adequate ration before it contacts the territoryholder and is driven off. In the laboratory, replicate setsof 10 limpets were trained to behave territorially and nonterritorially.Training mimicked natural encounters between territorial andnonterritorial L. gigantea. Limpets given territorial trainingleft significantly (t = -4.92, df = 9, p =.00041) more algalcover behind when grazing (on average 71%) than did limpetstrained to be nonterritorial (on average 50%). Territorial limpets seldom grazed over the same area more than once (4% of the grazedarea). In contrast, nonterritorial limpets frequently foragedover an area more than once; of the area grazed, 20% had beenvisited more than once. Previous agonistic experience determinesboth territorial behavior and foraging strategies, two of thecritical behaviors necessary for successful gardening behavior.Nonterritorial limpets maximize consumption per unit area, whereas territorial limpets appear to forage prudently, leaving a significantly greater proportion of the plant biomass behind.  相似文献   

10.
Predators may have multiple effects on prey, including the mortality caused by consumption, but also non-consumptive effects when prey alter their life history traits in the presence of predators. This study aimed to describe the consumption ability and the non-consumptive effects of Notonecta sellata (Heteroptera: Notonectidae) on immature stages of Culex pipiens (Diptera: Culicidae). Results showed that adult N. sellata were capable of preying on all larval instars, although they consumed more individuals of the 2(nd) and 3(rd) instars. Immature mosquitoes raised in the presence of, but without contact with, predators showed a slower development and smaller-sized emerging adults than those raised in the control treatments. Similar survival rates were recorded in the predator and control treatments. The present study suggests that N. sellata adults negatively affect Cx. pipiens populations in two ways: a) by increasing immature stage mortality as a result of direct consumption and extended development times; and b) by reducing their number of offspring, as a result of delayed reproduction and a lower fecundity of adults.  相似文献   

11.
Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor—completely plated and incompletely plated—are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near‐shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat‐forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.  相似文献   

12.
Phosphate (P(i)) is a major limiting factor for plant growth. Plants respond to limiting P(i) supplies by inducing a suite of adaptive responses comprising altered growth behaviour, enhanced P(i) acquisition and reduced P(i) demand that together define a distinct physiological state. In P(i)-starved plants, continued root growth is required for P(i) acquisition from new sources, yet meristem activity consumes P(i). Therefore, we analysed the relationship between organ growth, phosphate starvation-responsive (PSR) gene expression and P(i) content in Arabidopsis thaliana under growth-promoting or inhibitory conditions. Induction of PSR gene expression after transfer of plants to P(i)-depleted conditions quantitatively reflects prior levels of P(i) acquisition, and hence is sensitive to the balance of P(i) supply and demand. When plants are P(i)-starved, enhanced root or shoot growth exacerbates, whereas growth inhibition suppresses, P(i) starvation responses, suggesting that the magnitude of organ growth activity specifies the level of P(i) demand. Inhibition of cell-cycle activity, but not of cell expansion or cell growth, reduces P(i) starvation-responsive gene expression. Thus, the level of cell-cycle activity specifies the magnitude of P(i) demand in P(i)-starved plants. We propose that cell-cycle activity is the ultimate arbiter for P(i) demand in growing organs, and that other factors that influence levels of PSR gene expression do so by affecting growth through modulation of meristem activity.  相似文献   

13.
J. Gurnell    K. Rennolls 《Journal of Zoology》1983,200(3):355-365
Intrinsic growth rate and asymptotic body weight parameters were estimated for two laboratory and three field populations of the Wood mouse, Apodemus sylvaticus , using a logistic model fitted by an ordinary least squares method. The data upon which the growth equations were based were differences in body weight for individual animals between sampling occasions. Suckling mice in one of the laboratory studies suffered high mortalities and poor body growth which was related to disturbance to the mothers and their young during examination. Growth in weaned mice appeared normal and was compared with growth in autumn and winter populations of wild mice with poor and good natural seed supplies. Males tended to have higher growth rates, and to a lesser extent, higher body weight asymptotes than females in all groups. Growth rates were highest in the autumn field population with a good seed supply; differences between the other groups were less marked. These results are discussed and it is suggested that, despite the approximations inherent in the method, the method will be a useful tool for studying the the productivity of wild populations of small mammals.  相似文献   

14.
Summary In annual pastures utilized for grazing, the amount and quality of the standing dry matter in the dry season is of importance for the performance of the animals. Often both characteristics decline at the end of the green season. It is shown, that dispersal of the reproductive structures of the vegetation may be the main reason for this phenomenon. Determination of the reproductive effort of the annuals indicates that the proportion of their total production invested in reproductive tissue may be as high as that of cultivated species. It is shown that the harvest index (or seed ratio) of annual species is closely related to nutrient (mainly nitrogen) transfer from vegetative organs to the reproductive organs in the period between flowering and maturity, when in most cases, additional uptake of nitrogen from the soil is negligible. The effect of environmental and genetic effects on these processes is discussed.Present address: Laboratory of Soils and Fertilizers, Agricultural University, P.O. Box 14, Wageningen, The Netherlands  相似文献   

15.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

16.
Non-consumptive effects (NCEs) of predators on prey can be as strong as consumptive effects (CEs) and may be driven by numerous mechanisms, including predator characteristics. Previous work has highlighted the importance of predator characteristics in predicting NCEs, but has not addressed how complex life histories of prey could mediate predator NCEs. We conducted a meta-analysis to compare the effects of predator gape limitation (gape limited or not) and hunting mode (active or sit-and-pursue) on the activity, larval period, and size at metamorphosis of larval aquatic amphibians and invertebrates. Larval prey tended to reduce their activity and require more time to reach metamorphosis in the presence of all predator functional groups, but the responses did not differ from zero. Prey metamorphosed at smaller size in response to non-gape-limited, active predators, but counter to expectations, prey metamorphosed larger when confronted by non-gape-limited, sit-and-pursue predators. These results indicate NCEs on larval prey life history can be strongly influenced by predator functional characteristics. More broadly, our results suggest that understanding predator NCEs would benefit from greater consideration of how prey life history attributes mediate population and community-level outcomes.  相似文献   

17.
Biological soil characteristics such as microbial biomass, community structures, activities, and functions may provide important information on environmental and anthropogenic influences on agricultural soils. Diagnostic tools and detailed statistical approaches need to be developed for a reliable evaluation of these parameters, in order to allow classification and quantification of the magnitude of such effects. The DOK long-term agricultural field experiment was initiated in 1978 in Switzerland for the evaluation of organic and conventional farming practices. It includes three representative Swiss farming systems with biodynamic, bio-organic and conventional fertilization and plant protection schemes along with minerally fertilized and unfertilized controls. Effects on microbial soil characteristics induced by the long-term management at two different stages in the crop rotation, i.e. winter wheat after potato or corn, were investigated by analyzing soil bacterial community structures using analysis of PCR-amplified rRNA genes by terminal restriction fragment length polymorphism and ribosomal intergenic spacer analysis. Application of farmyard manure consistently revealed the strongest influence on bacterial community structures and biomass contents. Effects of management and plant protection regimes occurred on an intermediate level, while the two stages in the crop rotation had a marginal influence that was not significant.  相似文献   

18.
19.
A reliable marking technique was needed for a mark–release–recapture experiment with adults of Diabrotica speciosa (Germar). Four marking techniques, acrylic paint (spattered or brushed on the surface of the insect); and fluorescent pigments (dusted on surfaces or mixed with diet to produce an ingested marker), were tested. Fluorescent pigment durability for the dusting and ingested techniques was evaluated for laboratory conditions and under simulated field conditions. The impact of the techniques on beetle survival was also assessed. Both acrylic paint techniques caused mobility problems in the beetles, and neither technique lasted for more than 48 h. Both fluorescent pigment techniques were more reliable, but the dusting technique showed a significantly higher mortality than the control, and duration variations between laboratory and field conditions. Use of fluorescent pigments added to the diet was the most reliable technique. This technique allowed the manipulation of the marking period, and provided reliable timing of marker persistence in the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号