首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Some RNases selectively attack malignant cells, triggering an apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Here we studied the effects of Bacillus intermedius RNase (binase) on murine myeloid progenitor cells FDC-P1; transduced FDC-P1 cells ectopically expressing mutated human KIT N822K oncogene and/or human AML1-ETO oncogene; and human leukemia Kasumi-1 cells expressing both of these oncogenes. Expression of both KIT and AML1-ETO oncogenes makes FDC-P1 cells sensitive to the toxic effects of binase. Kasumi-1 cells were the most responsive to the toxic actions of binase among the cell lines used in this work with an IC50 value of 0.56 µM. Either blocking the functional activity of the KIT protein with imatinib or knocking-down oncogene expression using lentiviral vectors producing shRNA against AML1-ETO or KIT eliminated the sensitivity of Kasumi-1 cells to binase toxic action and promoted their survival, even in the absence of KIT-dependent proliferation and antiapoptotic pathways. Here we provide evidence that the cooperative effect of the expression of mutated KIT and AML1-ETO oncogenes is crucial for selective toxic action of binase on malignant cells. These findings can facilitate clinical applications of binase providing a useful screen based on the presence of the corresponding target oncogenes in malignant cells.  相似文献   

3.
4.
5.
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by a block in differentiation and uncontrolled proliferation. FLT3 is a commonly mutated gene found in AML patients. In clinical trials, the presence of a FLT3-ITD mutation significantly correlates with an increased risk of relapse and dismal overall survival. Therefore, activated FLT3 is a promising molecular target for AML therapies. In this study, we have shown that green tea polyphenols including (−)-epigallocatechin-3-gallate (EGCG), (−)-epigallocatechin (EGC), and (−)-epicatechin-3-gallate (ECG) suppress the proliferation of AML cells. Interestingly, EGCG, EGC and ECG showed the inhibition of FLT3 expression in cell lines harboring FLT3 mutations. In the THP-1 cells harboring FLT3 wild-type, EGCG showed the suppression of cell proliferation but did not suppress the expression of FLT3 even at the concentration that suppress 100% cell proliferation. Moreover, EGCG-, EGC-and ECG-treated cells showed the suppression of MAPK, AKT and STAT5 phosphorylation. Altogether, we suggest that green tea polyphenols could serve as reagents for treatment or prevention of leukemia harboring FLT3 mutations.  相似文献   

6.
7.
8.

Background

Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.

Methodology/Principal Findings

Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.

Conclusions/Significance

These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.  相似文献   

9.
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.  相似文献   

10.
A series of novel pyrrolo[2,3-d]pyrimidines were synthesized by introducing 15 different amino acids to 7-cyclohexyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine. Compounds with potent activities against HCK and FLT3-ITD were evaluated in viability studies with acute myeloid leukemia cell line MV4-11. Our structure activity relationship analyses lead to the identification of compound 31, which exhibited potent HCK and FLT3-ITD inhibition and activity against the MV4-11 cell line.  相似文献   

11.
FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) which occurs in approximately 30% of all AML patients still has a poor prognosis. This study aimed to examine the effect of decitabine (DAC) on FLT3-ITD positive AML. In our study, we found that expression of FLT3 and its downstream targets was decreased in FLT3-ITD mutant cell lines treated with DAC. DAC treatment could increase the percentage of apoptotic cells and CD11b positive cells tested by flow cytometry and upregulate the expression of cleaved caspase3, cleaved PARP, C/EBPa and PU.1 detected by western blot. To explore the effect of increased expression of PU.1 on FLT3 protein, we transiently transfected MOLM13 and MV4-11 cells with siRNA against PU.1 and a siRNA control. In both FLT3-ITD positive cells, the effect of DAC on downregulation of FLT3 was diminished in PU.1-konckdown MOLM13 and MV4-11 cells and there was a decrease of CD11b expression after PU.1 knockdown. Furthermore, the percentage of apoptotic cells was also decreased in PU.1-konckdown cells compared with siRNA control-expressing cells with the same dose of DAC. These findings indicated that DAC upregulated PU.1 to induce downregulation of FLT3 to trigger apoptosis. DAC was also found efficacious in mouse xenograft models of FLT3-ITD AML in our study. These findings may provide a novel theoretical basis for treatment of FLT3-ITD positive AML patients.  相似文献   

12.
Many of the mutations contributing to leukemogenesis in acute myeloid leukemia have been identified. A common activating mutation is an internal tandem duplication (ITD) mutation in the FLT3 gene that is found in approximately 25% of patients and confers a poor prognosis. FLT3 inhibitors have been developed and have some efficacy, but patients often relapse. Levels of FLT3 ligand (FL) are significantly elevated in patients during chemotherapy and may be an important component contributing to relapse. We used a mouse model to investigate the possible effect of FL expression on leukemogenesis involving FLT3-ITD mutations in an in vivo system. FLT3ITD/ITD FL−/− (knockout) mice had a statistically significant increase in survival compared with FLT3ITD/ITD FL+/+ (wildtype) mice, most of which developed a fatal myeloproliferative neoplasm. These findings suggest that FL levels may have prognostic significance in human patients. We also studied the effect of FL expression on survival in a FLT3-ITD NUP98–HOX13 (NHD13) fusion mouse model. These mice develop an aggressive leukemia with short latency. We asked whether FL expression played a similar role in this context. The NUP98-HOX13 FLT3ITD/wt FL−/− mice did not have a survival advantage, compared with NUP98-HOX13 FLT3ITD/wt FL+/+ mice (normal FL levels). The loss of the survival advantage of the FL knockout group in the NUP98–HOX13 model suggests that adding a second mutation changes the effect of FL expression in the context of more aggressive disease.Abbreviations: AML, acute myeloid leukemia; FL, FLT3 ligand; FLT3, FMS-like tyrosine kinase 3; ITD, internal tandem duplication; MPN, myeloproliferative neoplasmFMS-like tyrosine kinase 3 (FLT3) is normally activated by binding of its ligand (FL) to 2 FLT3 molecules, causing them to dimerize, autophosphorylate, and activate downstream targets.20,26,31 Although FL expression is relatively ubiquitous, the FLT3 receptor is found predominantly on hematopoietic cells and has an important role in hematopoiesis.6,13,24 Several mutations in the FLT3 gene can lead to constitutive activation that occurs independent of ligand binding and leads to activation of downstream targets; these mutations typically are found in patients with acute myeloid leukemia (AML). The most common mutation described in AML is an internal tandem duplication (ITD) that occurs in the juxtamembrane domain of FLT3. The ITD mutations vary in length,17,25 but these forms all constitutively activate FLT3 kinase activity to result in autophosphorylation and phosphorylation of its downstream targets.4,14,28,32 The ITD mutation is seen in approximately 25% of adult AML cases and is associated with a poor prognosis.18,19,23Despite the fact that FTL3-ITD is constitutively activated, some evidence indicates that FL may continue to play a role in FLT3 signaling and affect AML prognosis.35 Elevated plasma levels of FL have been reported in patients that have undergone chemotherapy.2,30 In addition, elevated levels of FL have been shown to increase the amount of FLT3 inhibitor needed to reduce the levels of phosphorylated FLT3-ITD in a cell line (Molm14) model.8,21,34 When a lentivirus was used to introduce a FLT3-ITD mutation into mouse embryonic fibroblast cells from FL-knockout mice, the addition of FL to the culture media resulted in an increase in the level of phosphorylated FLT3, further supporting the idea that FL may play a role in FLT3-ITD–associated AML.33 These previous models have all used cell lines, cultured cells, and plasma from patient samples to address the potential importance of FL expression in cases where an ITD mutation is present.Here we use primary hematopoietic cells from a combination of genetically engineered mouse models to investigate the role of FLT3 and FL in the pathogenesis of AML. The first model is a FLT3-ITD knockin mouse model with an 18-bp insertion in the juxtamembrane domain of FLT3 that was generated and characterized by our lab. This mouse model consistently and predictably develops myeloproliferative neoplasia (MPN) with moderately elevated WBC counts, splenomegaly, and myeloid expansion in the bone marrow, as evidenced by histopathologic changes and increased granulocytic/ monocytic fractions by flow cytometry.11 A small percentage (7%; 9 of 129) of the FLT3-ITD homozygous (FLT3ITD/ITD) mice spontaneously developed fully transformed leukemia.10 The second mouse model uses transgenic expression of a Nup98–Hox13 fusion (NHD13) that is expressed primarily in hematopoietic tissues. Mice that carry this mutation typically develop a myelodysplastic syndrome that often progresses to acute leukemia after a long lag time.12 When these mice were bred to our FLT3-ITD mice, the resulting double-mutant Nup98–Hox13 (NHD13) FLT3wt/ITD mice predominantly developed an AML with minimal differentiation and demonstrated a markedly shorter latency to disease. Interestingly, a subset of mice display loss of heterozygosity of the wildtype Flt3 allele in the bone marrow7 as occurs in a fraction of human FLT3-ITD AML patients.22,29 The third model is a FL-knockout mouse model that was developed at Immunex (Seattle, WA) and is currently commercially available. These mice have the majority of the FL extracellular domain coding region disrupted by insertion of a PKG–Neo cassette. These mice demonstrated reduced cellularity in the bone marrow and an overall reduction in hematopoietic precursors, especially of the myeloid and lymphoid lineages.16To examine the effect of FL expression on disease conferred by a FLT3-ITD mutation, we used 2 genetically engineered mouse models: the first is the model of MPN generated by the FLT3ITD/ITD mutation alone. The second was a leukemia model that is generated by the combination of a FLT3wt/ITD together with a NHD13 mutation. Into both of these models, we bred mice that were either wildtype for FL or that had FL knocked out. We then characterized survival and disease phenotype data from each cohort to ascertain the effect of FL expression on MPN and AML generated by FLT3-ITD expression.  相似文献   

13.
FLT3 is the most frequently mutated kinase in acute myeloid leukemia (AML). Internal tandem duplications (ITDs) in the juxta-membrane region constitute the majority of activating FLT3 mutations. Several FLT3 kinase inhibitors were developed and tested in the clinic with significant success. However, recent studies have reported the development of secondary drug resistance in patients treated with FLT3 inhibitors. Since FLT3-ITD is an HSP90 client kinase, we here explored if targeting the stability of drug-resistant FLT3 mutant protein could be a potential therapeutic option. We observed that HSP90 inhibitor treatment resulted in the degradation of inhibitor-resistant FLT3-ITD mutants and selectively induced toxicity in cells expressing FLT3-ITD mutants. Thus, HSP90 inhibitors provide a potential therapeutic choice to overcome secondary drug resistance following TKI treatment in FLT3-ITD positive AML.  相似文献   

14.
A series of simplified ring-opened resorcylic acid lactone (RAL) derivatives were conveniently synthesized to target FLT3 and its mutants either irreversibly or reversibly. Our design of covalent FLT3 inhibitors is based on cis-enone RALs (e.g., L-783,277) that have a β-resorcylic acid as the core structure. The designed compounds contain three types of Michael acceptors (acrylamide, vinylsulfonamide and maleimide) as potential covalent traps of a cysteine residue at the binding site of kinases. A variety of functional substitutions were also introduced to maximize the binding interactions. Biological evaluations revealed that compound 17, despite the presence of a highly reactive maleimide Michael acceptor, is a potent covalent FLT3 inhibitor which shows some specificity in cellular assays. On the other hand, compounds 2 and 6 containing acrylamide or vinylsulfonamide groups are reversible towards FLT3 binding, and are potent and selective inhibitors of mutant FLT3-ITD versus wt-FLT3. They also inhibit cell proliferation in FLT3-ITD expressing cell line MV-4-11 as compared to wt-FLT3 expressing cell line THP-1 and non-FLT3 cell lines (K562, HL60 and Hek-293T).  相似文献   

15.
Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Sunitinib, a multikinase inhibitor, was the first Fms-like tyrosine kinase 3 (FLT3) inhibitor clinically used against AML. Off-target effects are a major concern for multikinase inhibitors. As targeted delivery may reduce such undesired side effects, our goal was to develop novel amino acid substituted derivatives of sunitinib which are potent candidates to be used conjugated with antibodies and peptides. In the current paper we present the synthesis, physicochemical and in vitro characterization of sixty two Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutant kinase inhibitors, bearing amino acid moieties, fit to be conjugated with peptide-based delivery systems via their carboxyl group. We determined the solubility, pKa, CHI and LogP values of the compounds along with their inhibition potential against FLT3-ITD mutant kinase and on MV4-11 cell line. The ester derivatives of the compounds inhibit the growth of the MV4-11 leukemia cell line at submicromolar concentration.  相似文献   

16.
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4–11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4–11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4–11 and THP1 cells. TST induced the apoptosis of MV4–11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.  相似文献   

17.
Growth factors and cytokines including FLT3 Ligand (FLT3L) have many applications in cellular and molecular biology studies, and also as therapeutical agents. FLT3L was expressed in Pichia pastoris through cloning from human leukemic K562 cell line as well as using a codon-optimized synthetic construct. Codon adaptation index (CAI) was increased from 55 in the native sequence up to 95 after optimization. Significant changes occurred in the codons for Pro, Arg, Leu and Ser toward the favored codons in P. pastoris. Both forms of expressed FLT3L (from the native and optimized sequences) were capable of stimulating proliferation of the FDC-P1 cells expressing human wild-type FLT3 (FD–FLT3–WT). Sequence optimization resulted in 55-fold increase in the yield of active FLT3L (290 μg/mL of product in the crude supernatant). Amino acid residues 27–162 are sufficient for the biological function of human FLT3L. Pichia pastoris is a highly efficient and cost-effective system for expression of endotoxin-free FLT3L; however, codon optimization is necessary for its optimal expression.  相似文献   

18.

Background

Molecular characterisation of normal karyotype acute myeloid leukemia (NK-AML) allows prognostic stratification and potentially can alter treatment choices and pathways. Approximately 45–60% of patients with NK-AML carry NPM1 gene mutations and are associated with a favourable clinical outcome when FLT3-internal tandem duplications (ITD) are absent. High resolution melting (HRM) is a novel screening method that enables rapid identification of mutation positive DNA samples.

Results

We developed HRM assays to detect NPM1 mutations and FLT3-ITD and tested diagnostic samples from 44 NK-AML patients. Eight were NPM1 mutation positive only, 4 were both NPM1 mutation and FLT3-ITD positive and 4 were FLT3-ITD positive only. A novel point mutation Y572C (c.1715A>G) in exon 14 of FLT3 was also detected. In the group with de novo NK-AML, 40% (12/29) were NPM1 mutation positive whereas NPM1 mutations were observed in 20% (3/15) of secondary NK-AML cases. Sequencing was performed and demonstrated 100% concordance with the HRM results.

Conclusion

HRM is a rapid and efficient method of screening NK-AML samples for both novel and known NPM1 and FLT3 mutations. NPM1 mutations can be observed in both primary and secondary NK-AML cases.  相似文献   

19.
Herein we report the discovery of 1-(5-(tert-butyl)isoxazol-3-yl)-3- (3-fluorophenyl)urea derivatives as new FLT3 inhibitors that are able to overcome the drug resistance mutations: the secondary D835Y and F691L mutations on the basis of the internal tandem duplications (ITD) mutation of FLT3 (FLT3-ITD/D835Y and FLT3-ITD/F691L, respectively). The most potent compound corresponds to 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7-dimethoxyquinolin-4-yl)oxy)-3- fluorophenyl)urea (4d), which showed IC50s (half maximal inhibitory concentrations) of 0.072 nM, 5.86 nM and 3.48 nM against FLT3-ITD, FLT3-ITD/F691L and FLT3-ITD/D835Y, respectively. Compound 4d also showed good selectivity for FLT3 in a kinase profiling assay. Collectively, 4d could be a good lead compound and deserves further in-depth studies.  相似文献   

20.
BackgroundAcute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.MethodsWe screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups.ResultsEight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.ConclusionThis study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号