首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular species of 1,2-diacylglycerol in control and agonist-stimulated rat hepatocytes were analyzed by high performance liquid chromatography. Twelve species were identified which were increased nonuniformly by 100 nM vasopressin. Most species were increased 2-3-fold, but some (C16:0/C20:4 and C18:0/C20:4) were increased 3-6-fold. Selectively greater increases in the latter two species were also induced by ATP, angiotensin II, and A23187 ionophore, however, phorbol ester caused uniform increases. Calcium depletion of the cells with chelator resulted in a uniform 2-fold effect of vasopressin on 1,2-diacylglycerol species, with greater increases in C16:0/C20:4 and C18:0/C20:4 being restored by Ca2+ readdition. Comparison of the increases in 1,2-diacylglycerol species caused by the Ca2+-mediated agents with the molecular species present in rat hepatocyte phospholipids supports the concept that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates. In hepatocytes incubated for 5 min to 2 h with 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine, the label was incorporated mainly into phosphatidylcholine, and subsequent incubation with vasopressin, angiotensin II, ATP, epinephrine, A23187, and phorbol ester caused formation of [3H]alkyl-acylglycerol, but not [3H]alkyl-phosphatidic acid. The time course and concentration dependence of the vasopressin effect were similar to those reported previously for total 1,2-diacylglycerol (Bocckino, S. B., Blackmore, P. F., and Exton, J. H. (1985) J. Biol. Chem. 260, 14201-14207). Calcium depletion induced by chelator inhibited the effect of vasopressin, and readdition of Ca2+ largely restored the effect. In cells incubated with [14C]lyso-phosphatidylcholine, [3H]phosphatidylcholine, or [14C]phosphatidylethanolamine for 5 or 30 min to label hepatocyte phosphatidylcholine, vasopressin also induced the formation of labeled 1,2-diacylglycerol, but not phosphatidic acid. In contrast, in hepatocytes prepared from rats injected intraportally with [3H]alkyl-lyso-glycerophosphocholine 20 h previously, the hormone induced the rapid formation of both labeled 1,2-diacylglycerol and phosphatidic acid. In summary, these isotopic data indicate that a rapidly labeled pool of phosphatidylcholine is hydrolyzed to 1,2-diacylglycerol and a slowly labeled pool is broken down to both 1,2-diacylglycerol and phosphatidic acid in hepatocytes stimulated by Ca2+-mobilizing agents. It is concluded from both the analyses of molecular species of 1,2-diacylglycerol and the labeling experiments that phosphatidylcholine is a major source of the 1,2-diacylglycerol that accumulates in hepatocytes stimulated with Ca2+-mobilizing agonists and that the mechanisms responsible may involve both Ca2+ and protein kinase C.  相似文献   

2.
The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.  相似文献   

3.
Phosphatidic acid generation through activation of diacylglycerol kinase alpha has been implicated in interleukin-2-dependent T-lymphocyte proliferation. To investigate this lipid signaling in more detail, we characterized the molecular structures of the diradylglycerols and phosphatidic acids in the murine CTLL-2 T-cell line under both basal and stimulated conditions. In resting cells, 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol subtypes represented 44 and 55% of total diradylglycerol, respectively, and both showed a highly saturated profile containing primarily 16:0 and 18:1 fatty acids. 1-O-Alk-1'-enyl-2-acylglycerol represented 1-2% of total diradylglycerol. Interleukin-2 stimulation did not alter the molecular species profiles, however, it did selectively reduce total 1-O-alkyl-2-acylglycerol by over 50% at 15 min while only causing a 10% drop in 1,2-diacylglycerol. When radiolabeled CTLL-2 cells were challenged with interleukin-2, no change in the cellular content of phosphatidylcholine nor phosphatidylethanolamine was observed thereby ruling out phospholipase C activity as the source of diradylglycerol. In addition, interleukin-2 failed to stimulate de novo synthesis of diradylglycerol. Structural analysis revealed approximately equal amounts of 1,2-diacyl phosphatidic acid and 1-O-alkyl-2-acyl phosphatidic acid under resting conditions, both containing only saturated and monounsaturated fatty acids. After acute (2 and 15 min) interleukin-2 stimulation the total phosphatidic acid mass increased, almost entirely through the formation of 1-O-alkyl-2-acyl species. In vitro assays revealed that both 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol were substrates for 1,2-diacylglycerol kinase alpha, the major isoform in CTLL-2 cells, and that the lipid kinase activity was almost totally inhibited by R59949. In conclusion, this investigation shows that, in CTLL-2 cells, 1,2-diacylglycerol kinase alpha specifically phosphorylates a pre-existing pool of 1-O-alkyl-2-acylglycerol to form the intracellular messenger 1-O-alkyl-2-acyl phosphatidic acid.  相似文献   

4.
Insulin and oxytocin effects on phosphoinositide metabolism in adipocytes   总被引:4,自引:0,他引:4  
The effects of hormones on phosphoinositide metabolism were examined in rat adipocytes prelabeled with 32Pi or [3H]inositol. Oxytocin and vasopressin produced large decreases in labeled polyphosphoinositides and increases in phosphatidic acid and inositol phosphates, whereas insulin was without effect, although it stimulated lipogenesis from glucose. Likewise, insulin did not elevate 1,2-diacylglycerol measured chemically by high pressure liquid or thin-layer chromatography in fat cells or pads. It also did not increase the radioactivity in 1,2-diacylglycerol in ghosts prepared from fat cells previously labeled with [3H]arachidonic acid, although oxytocin and vasopressin increased this. It is therefore concluded that insulin does not stimulate the breakdown of polyphosphoinositides to yield 1,2-diacylglycerol and inositol phosphates in adipocytes and that the insulin-like actions of oxytocin must be due to other changes. Insulin induced small, but significant and equal increases (40% at 30 min) in the incorporation of [3H] inositol into phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in adipocytes. The effects were not dependent upon glucose and were not evident before 15 min. Oxytocin also produced large increases in the labeling of the three phosphoinositides. Insulin stimulated the incorporation of [3H]glycerol into the three phosphoinositides and also phosphatidic acid, phosphatidylserine, and phosphatidylethanolamine by 50-100% in cells incubated without glucose. No changes in the labeling of glycerol 3-phosphate, lysophosphatidic acid, phosphatidylcholine, and triacylglycerol were detected, and there was a small increase (30%) in 1,2-diacylglycerol labeling. It is concluded that insulin increases the synthesis of phosphatidylinositol, phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylethanolamine, and phosphatidylserine in fat cells partly by stimulating a reaction(s) located between glycerol 3-phosphate and phosphatidic acid in the biosynthetic pathway.  相似文献   

5.
Endothelin has steroidogenic activity in adrenal glomerulosa cells, as do two other vasoconstrictor peptides, angiotensin II and vasopressin. The steroidogenic activities of angiotensin II and vasopressin are probably mediated via the phosphatidylinositol-turnover pathway and associated changes in cytosolic Ca2+ concentration. Endothelin caused a steroidogenic response, which was small compared with that to angiotensin II and quantitatively similar to the vasopressin response. Cytosolic free Ca2+ responses were similarly higher to angiotensin II than to either of the other two peptides. However, total inositol phosphate responses to endothelin and angiotensin II were similar when these were measured over 20 min, and were quantitatively greater than the vasopressin response. A detailed study has been made of the phosphatidylinositol-turnover response to endothelin in comparison with responses to angiotensin II and vasopressin. Each of the three peptides produced a rapid and transient rise in Ins(1,4,5)P3 (max. 5-15 s), followed by a slow sustained rise. Ins(1,4,5)P3 was metabolized by both dephosphorylation and phosphorylation pathways, but the relative importance of the two metabolic pathways was different under stimulation by each of the three peptides. These findings show that adrenal glomerulosa cells can distinguish between the stimulation of phosphatidylinositol turnover by three different effectors. These differences in the pathway may be associated with the observed different steroidogenic and Ca2+ responses to the three peptides.  相似文献   

6.
Mass analysis of 1,2-diacylglycerol (DG) with a radioenzymatic assay revealed that endothelin induced a biphasic formation of DG with an early transient phase peaking at 30 sec and a late sustained phase peaking at 5 min in cultured rabbit vascular smooth muscle cells (VSMCs). The amounts of DG after the 30-sec and 5-min incubation with endothelin were 0.74 +/- 0.08 (mean +/- SE) nmol and 0.87 +/- 0.10 nmol/100 nmol of lipid phosphorus, representing 2.6- and 3.1-fold increases of the resting level, respectively. The EC50 values of endothelin for the early and late phases of DG formation were about 1 nM and 40 nM, respectively. In the [3H] inositol-labeled VSMCs, endothelin induced a rapid transient formation of inositol tris- and bisphosphates which peaked at 30 sec and a sustained formation of inositol monophosphate which peaked at 5 min. The EC50 values for the formation of these inositol phosphates were the same and about 1 nM. These results suggest that the early transient phase of DG is derived from the hydrolysis of polyphosphoinositides, while a large part of the late sustained phase of DG is from the reaction(s) other than the hydrolysis of phosphoinositides but its sources remain to be clarified.  相似文献   

7.
The purpose of this study was to investigate whether the increased contractile responsiveness of aortae from male rats with 12-14 week streptozotocin-induced diabetes to noradrenaline is associated with alterations in phosphoinositide metabolism. The contractile response to noradrenaline (10 microM) in both the presence and absence of extracellular calcium was significantly enhanced in aortae from diabetic rats. No significant differences were found between control and diabetic arteries in the basal incorporation of 32P and [3H]myo-inositol into phosphoinositides, or in the basal accumulation of [32P]phosphatidic acid and [3H]inositol phosphates. However, noradrenaline (10 microM) caused significantly greater breakdown of [32P]phosphatidylinositol 4,5-bisphosphate and formation of [32P]phosphatidic acid and [3H]inositol phosphates in diabetic aortae than in control preparations. The production of [3H]inositol phosphates induced by noradrenaline was selectively reduced by the alpha 1-adrenoceptor antagonist, prazosin, in both control and diabetic tissues. These results indicate that phosphoinositide metabolism in response to noradrenaline via stimulation of alpha 1-adrenoceptors is enhanced in aortae from chronic streptozotocin-diabetic rats. The increase in inositol 1,4,5-trisphosphate and 1,2-diacylglycerol production that presumably results could be responsible, at least in part, for the enhanced contractile response of aortae from diabetic rats to noradrenaline.  相似文献   

8.
The hormonal regulation of phosphoinositide levels in isolated hepatocytes was studied using chemical means. Extracted inositol phospholipids were adsorbed to neomycin-coated glass beads and then eluted and quantitated by charring after separation by thin layer chromatography on silica gel. The amounts (in nanograms/mg wet weight) of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), and phosphatidylinositol (PI) were 20 +/- 1, 16 +/- 1, and 1790 +/- 140, respectively). Incubation of the cells with 100 nM vasopressin decreased the value for PIP2 to 10 +/- 0.2 at 15 s, 12 +/- 1.5 at 1 min, and 14 +/- 2.1 at 5 and 30 min. In contrast, the hormone increased 1,2-diacylglycerol plus phosphatidate by over 200 ng/mg wet weight at 5 min under similar conditions (Bocckino, S. B., Blackmore, P. F., Wilson, P. B., and Exton, J. H. (1987) J. Biol. Chem. 262, 15309-15315). PIP2 was also significantly decreased at 15 s by angiotensin II (100 nM), ATP (100 microM), and epinephrine (1 microM). In contrast, PIP was not significantly changed, and PI was significantly decreased (by approximately 15%) at later times (15 and 30 min). The changes in phosphoinositide mass were well correlated with changes in labeled phosphoinositides in hepatocytes previously incubated with [3H]inositol for 90 min. The amounts of inositol phospholipids in liver plasma membranes (in micrograms/mg protein) were 2.1 +/- 0.2 for PIP2, 0.24 +/- 0.03 for PIP, and 23 +/- 4 for PI. Comparison of these values with those for whole cells suggests that PIP2 is enriched in the plasma membrane, whereas PIP is present elsewhere in the cell. The fatty acid composition of whole cell PIP2 showed significant differences from that of PI. The percentages of palmitic, stearic, linoleic, and arachidonic acids were, respectively, 14, 41, 10, and 25 for PIP2 and 10, 34, 7, and 37 for PI. Vasopressin treatment for 15 s did not alter the fatty acid composition of PIP2. The corresponding fatty acid percentages for liver plasma membranes were 13, 41, 11, and 21 for PIP2 and 8, 34, 0, and 40 for PI. The fatty acid composition of PIP in whole cells and plasma membranes resembled that of PIP2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells (VSMC) to induce the rapid, phospholipase C-mediated generation of inositol trisphosphate from phosphatidylinositol 4,5-bisphosphate and mobilization of intracellular Ca2+. sn-1,2-Diacylglycerol, the other major product of inositol phospholipid breakdown, is known to activate protein kinase C, but its role in angiotensin II action on VSMC has not been defined. We report herein that, in cultured VSMC prelabeled with [3H]myoinositol, brief incubations (2-5 min) with 4 beta-phorbol 12-myristate 13-acetate (PMA) (1-100 nM) or 1-oleoyl-2-acetylglycerol (10-100 microM), two potent activators of protein kinase C, inhibit subsequent angiotensin II (100 nM)-induced increases in phosphatidylinositol 4,5-bisphosphate breakdown and inositol trisphosphate formation. In addition, pretreatment of VSMC with either PMA (IC50 approximately 1 nM) or 1-oleoyl-2-acetylglycerol (IC50 approximately 7.5 microM) also markedly inhibits angiotensin II (1 nM)-stimulated increases in cytosolic free Ca2+, as measured with the calcium-sensitive fluorescent indicator quin 2, or 45Ca2+ efflux. Neither PMA nor 1-oleoyl-2-acetylglycerol initiated phosphatidylinositol 4,5-bisphosphate breakdown or Ca2+ flux by itself. PMA treatment (10 nM, 5 min) did not influence the number or affinity of 125I-angiotensin II-binding sites in intact cells. These data suggest that one function of angiotensin II-generated sn-1,2-diacylglycerol in vascular smooth muscle may be to modulate, by protein kinase C-mediated mechanisms, angiotensin II receptor coupling to phospholipase C.  相似文献   

10.
To clarify the signal transduction mechanism of angiotensin II in renal glomeruli, we studied the effect of the hormone on phospholipid metabolism using isolated rat glomeruli. Stimulation of the glomeruli pulse-chase labeled with [3H]glycerol by angiotensin II caused a rapid (within 15 s) breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) with a concurrent production of 1,2-diacylglycerol. This effect of angiotensin II was in a dose-dependent manner within the range from 10(-12) M to 10(-6) M, and was inhibited by saralasin. Angiotensin II also decreased the 3H radioactivity of PIP slightly only at 15 s and increased that of phosphatidic acid after 15 s, with no significant effect upon the labelings of phosphatidylinositol (PI), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) within 1 min. The change in phospholipid metabolism by angiotensin II was similar when the glomeruli were labeled with [32P]orthophosphate: the decrease in the labeling of PIP2 and the increase in the labeling of phosphatidic acid after 15 s. In addition, 32P labeling of PI increased after 2 min. These results suggest that angiotensin II, after binding to glomerular receptors, induces initial PIP2 hydrolysis to diacylglycerol and subsequent resynthesis of PIP2 through phosphoinositide turnover.  相似文献   

11.
Treatment of GH3 cells with thyrotropin-releasing hormone (TRH) for periods up to 60 min resulted in a prolonged reduction in the cellular content of phosphatidylinositol (PtdIns) with no lasting change in the levels of the other inositol-containing phospholipids. Accompanying this was a maintained increase in the GH3 cell 1,2-diacylglycerol content and a slower decline in the level of cellular triacylglycerol. When the cells were suspended in lithium-containing balanced salt solution for 30 min (in the absence of exogenous myo-inositol), there was a 15% decrease in GH3 cell inositol levels. This was associated with a small, but significant, increase in the cellular content of phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) and 1,2-diacylglycerol. Addition of TRH to cells suspended in lithium-containing medium depleted cellular inositol levels by around 65% within 30 min. By this time, there was also a 50% reduction in the cellular content of PtdIns and a 20% reduction in phosphatidylinositol 4-phosphate (PtdIns4P). Control levels of PtdIns4,5P2 were maintained in the combined presence of TRH and lithium. Under those conditions, TRH no longer depleted cellular triacylglycerol and there was a marked increase in the ability of TRH to elevate the GH3 cell content of 1,2-diacylglycerol. The effect of TRH on the cellular content of phosphatidic acid was not altered by the presence of lithium. The results show, firstly, that when PtdIns resynthesis is inhibited by lithium-induced inositol depletion, its glycerol backbone accumulates, at least in part, in 1,2-diacylglycerol and, secondly, that GH3 cells preserve their cellular levels of PtdIns4,5P2 in the face of a considerable reduction in the cellular content of PtdIns.  相似文献   

12.
[Arginine]vasopressin (AVP) stimulates maximal prostaglandin E2 production in cultured rat renal mesangial cells within 2 min. As early as 10s after addition of AVP (10(-6)M) a significant loss of radioactivity from phosphatidylinositol 4,5-bisphosphate but not from phosphatidylinositol 4-phosphate and phosphatidylinositol was observed in cells prelabelled with 32Pi. Cells labelled with [14C]arachidonic acid showed an increase of label in 1,2-diacylglycerol after 15 s and in phosphatidic acid after 30 s upon stimulation with AVP. Pretreatment of the cells with indomethacin (10(-5)M) did not abolish the effect of AVP on the increased labelling of phosphatidic acid.  相似文献   

13.
We have examined the effects of the tyrosine kinase inhibitor genistein on hormone dependent cell proliferation and intracellular signalling in mouse 10T1/2 fibroblasts and rat liver T51B epithelial cells. Genistein inhibits both PDGF and EGF induced mitogenesis with an IC50 of 40 uM and 10 uM respectively. Genistein also inhibits inositol phosphate generation and calcium signalling in response to PDGF, and 1,2-diacylglycerol generation and calpactin II translocation in response to EGF. By contrast genistein does not inhibit inositol phosphate production, Ca2+ signalling or 1,2-diacylglycerol generation in response to ATP or angiotensin II. These data demonstrate that genistein selectively inhibits tyrosine kinase dependent processes without effecting similar responses obtained to hormones which are not dependent upon tyrosine kinase activation.  相似文献   

14.
Proliferation in rat liver T51B cells has previously been shown to be initiated by the tyrosine-kinase activator epidermal growth factor. We have found that T51B cells also contain angiotensin II receptors, and, as the transforming mas oncogene has been identified as a functional angiotensin receptor [Jackson, Blair, Marshall, Goedert & Hanley (1988) Nature (London) 335, 437-440], we have investigated the possibility that angiotensin II might also regulate proliferation of T51B cells. Angiotensin II at concentrations up to 10 microM did not promote DNA synthesis, even in the presence of the co-mitogens serum (1%) or 12-O-tetradecanoylphorbol 13-acetate (TPA) (50 ng/ml). The addition of 1 microM angiotensin II to myo-[3H]inositol-radiolabelled T51B cells did however result in a rapid accumulation of multiple inositol phosphates as well as in an increase in intracellular Ca2+, demonstrating the coupling of the angiotensin receptor in these cells to a polyphosphoinositide-hydrolysing phospholipase C. The increases in both inositol phosphates and intracellular Ca2+ were lower in cells pretreated for 10 min with 50 ng of TPA/ml and potentiated by a 24 h pretreatment with TPA. In addition, angiotensin II increased 1,2-diacylglycerol levels. These results demonstrate that, although angiotensin II is capable of increasing phosphoinositide-derived second messengers in T51B cells, these responses are not sufficient to trigger DNA synthesis.  相似文献   

15.
TRH stimulation of rat pituitary (GH3) cells causes biphasic changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) and PRL secretion. It has been proposed, based primarily on indirect evidence, that the first phase effects are mediated by inositol 1,4,5-trisphosphate, which releases Ca2+ from cellular stores, and the sustained effects are mediated by 1,2-diacylglycerol, which activates protein kinase C. To determine more directly if inositol lipid hydrolysis leading to protein kinase C activation is involved in the sustained effects of TRH, GH3 cells were depleted of phosphatidylinositol (PtdIns) by prestimulation and incubation in myo-inositol-free, Li(+)-containing medium. Cells depleted of PtdIns (to 53 +/- 3.2% of control) had unchanged PtdIns 4,5-bisphosphate content, and responded to TRH with a rapid elevation of inositol trisphosphate, and a first phase (or burst) elevation of [Ca2+]i and PRL secretion that was not different from that found in control cells. In contrast, in PtdIns-depleted cells, the prolonged generation of inositol phosphates, which are produced in equimolar amounts with 1,2-diacylglycerol, caused by TRH was virtually abolished, and the second phase (or sustained) elevation of [Ca2+]i and PRL secretion were inhibited by 50% and 40%, respectively. The inhibition of both sustained effects was reversed by adding 100 mM myo-inositol to the medium, which allowed for synthesis of PtdIns. Last, in cells in which protein kinase C was down-regulated by pretreatment with a phorbol ester, the sustained effects of TRH were inhibited also.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have shown previously that exposure of a non-transformed continuous line of rat liver epithelial (WB) cells to epidermal growth factor (EGF), adrenaline, angiotensin II or [Arg8]vasopressin results in an accumulation of the inositol phosphates InsP1, InsP2 and InsP3 [Hepler, Earp & Harden (1988) J. Biol. Chem. 263, 7610-7619]. Studies were carried out with WB cells to determine whether the EGF receptor and other, non-tyrosine kinase, hormone receptors stimulate phosphoinositide hydrolysis by common, overlapping or separate pathways. The time courses for accumulation of inositol phosphates in response to angiotensin II and EGF were markedly different. Whereas angiotensin II stimulated a very rapid accumulation of inositol phosphates (maximal by 30 s), increases in the levels of inositol phosphates in response to EGF were measurable only following a 30 s lag period; maximal levels were attained by 7-8 min. Chelation of extracellular Ca2+ with EGTA did not modify this relative difference between angiotensin II and EGF in the time required to attain maximal phospholipase C activation. Under experimental conditions in which agonist-induced desensitization no longer occurred in these cells, the inositol phosphate responses to EGF and angiotensin II were additive, whereas those to angiotensin II and [Arg8]vasopressin were not additive. In crude WB lysates, angiotensin II, [Arg8]vasopressin and adrenaline each stimulated inositol phosphate formation in a guanine-nucleotide-dependent manner. In contrast, EGF failed to stimulate inositol phosphate formation in WB lysates in the presence or absence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]), even though EGF retained the capacity to bind to and stimulate tyrosine phosphorylation of its own receptor. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate the inhibitory guanine-nucleotide regulatory protein of adenylate cyclase (Gi), had no effect on the capacity of EGF or hormones to stimulate inositol phosphate accumulation. In intact WB cells, the capacity of EGF, but not angiotensin II, to stimulate inositol phosphate accumulation was correlated with its capacity to stimulate tyrosine phosphorylation of the 148 kDa isoenzyme of phospholipase C. Taken together, these findings suggest that, whereas angiotensin II, [Arg8]vasopressin and alpha 1-adrenergic receptors are linked to activation of one or more phospholipase(s) C by an unidentified G-protein(s), the EGF receptor stimulates phosphoinositide hydrolysis by a different pathway, perhaps as a result of its capacity to stimulate tyrosine phosphorylation of phospholipase C-gamma.  相似文献   

17.
Phosphoinositide hydrolysis is elicited by -adrenoceptor stimulation in the myocardium, resulting in the generation of 1,2-diacylglycerol by the direct activation of phospholipase C. However, the physiological role of 1,2-diacylglycerol accumulation in the heart has been largely unexplored. Therefore, we studied the effects of norepinephrine on the accumulation of 1,2-diacylglycerol and its fatty acid composition, as well as its function in isolated perfused rat hearts. A 30 min perfusion with norepinephrine following a stabilization period of 25 min caused increases of 68% and 57% in 1,2-diacylglycerol levels in the heart at 10–6 M and 5 × 10–6 M, respectively, compared to controls. Analysis of its fatty acid composition showed a significant elevation in the percentages of 18:2 and 20:4 although the absolute amounts of these increases in fatty acids were relatively low when compared to the elevation in the total amount of 1,2-diacylglycerol. The change in contractility was not consistently related to an increase in 1,2-diacylglycerol. These results indicate that increase in 1,2-diacylglycerol level in response to norepinephrine perfusion was accompanied by a change in fatty acid composition of 1,2-diacylglycerol.  相似文献   

18.
Quantitative changes in the total mass and the molecular species of 1,2-diacyl-sn-glycerol (DAG) and phosphatidic acid (PA) formed upon muscarinic receptor activation were studied in cultured human SK-N-SH neuroblastoma cells. DAG was isolated from the total lipid extracts of carbachol (CCh)-stimulated and unstimulated cells and after benzoylation, was subjected to reverse phase high performance liquid chromatography to separate the component species. The molecular species of DAG were identified by analyzing the fatty acid composition of each separated fraction by gas chromatography, and their total and individual masses were quantified from the known amount of an internal standard, 1,2-distearoyl-sn-glycerol, added during the extraction of the lipid. Relatively high basal levels of DAG (1.5 nmol/mg protein) are present in these cells, and addition of CCh elicited a 50-60% increase in the total amounts of DAG within 5 min. The increase was biphasic: an initial major peak at 5 min was followed by a sustained increase that persisted for at least 30 min. An increase in DAG was elicited by both full and partial muscarinic agonists and was blocked by atropine. The presence of extracellular Ca2+ was necessary for muscarinic receptor-activated formation of DAG. To determine the source of the DAG, the molecular species of the major phospholipids present in SK-N-SH cells were also analyzed. The phospholipids were first enzymatically hydrolyzed to DAGs which were then analyzed as described above. A number of unusual fatty acids, the major one being 20:3 (n-9), were present in these lipids especially in the phosphoinositides and also in the DAG formed after CCh stimulation. Within 5 s of CCh stimulation there were transient increases in the DAG species representative of phosphoinositides. By 5 min the newly formed molecular species of DAG resembled a mixture of phosphoinositides and phosphatidylcholine (PC). Quantitative comparison of the molecular species compositions of phosphoinositides, PC, and newly formed DAGs indicated that at time periods up to 10 min, approximately 30% of the DAG originated from the phosphoinositides and the rest from PC. At longer intervals (greater than 20 min), most (85%) of DAGs originated from PC. Activation of muscarinic receptors in SK-N-SH cells also elicited an increase in PA (200% in 5 min). A quantitative molecular species analysis, using 1,2-distearoyl-sn-glycerol-3-P as internal standard, was performed by enzymatic (alkaline phosphatase) hydrolysis of PA to DAG and subsequent analysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1,2-Diacylglycerol (DAG) was measured in neutral lipid extracts from isolated hepatocytes using high pressure liquid chromatography followed by refractive index detection. Maximally effective doses of epinephrine, angiotensin II, and vasopressin increased DAG by approximately 65, 80, and 180-250%, respectively, with maximal increases being observed at 8-10 min. Depletion of cellular Ca2+ resulted in a 50% decrease in DAG accumulation elicited by vasopressin. Other agents which increased DAG levels were the tumor promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (120% increase at 10(-6) M), the Ca2+ ionophore A23187 (385% increase at 10(-5) M), and ATP (180% increase at 1 mM). The concentration dependence of DAG accumulation in response to epinephrine, angiotensin II, and vasopressin was similar to that found for myoinositol triphosphate accumulation (Charest, R., Prpic, V., Exton, J. H., and Blackmore, P.F. (1985) Biochem. J. 227, 79-90), which was approximately 5-10 times less sensitive to hormone than was phosphorylase activation. Fatty acid analysis revealed that hormonally induced DAG was partially derived from sources other than inositol phospholipids. It is proposed from these studies that Ca2+-mobilizing hormones elicit a prolonged increase in the levels of hepatocyte DAG, which may activate protein kinase C.  相似文献   

20.
Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号