首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre‐exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol?1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol?1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release.  相似文献   

3.
Farag MA  Ryu CM  Sumner LW  Paré PW 《Phytochemistry》2006,67(20):2262-2268
Chemical and plant growth studies of Bacilli strains GB03 and IN937a revealed that the volatile components 2,3-butanediol and acetoin trigger plant growth promotion in Arabidopsis. Differences in growth promotion when cytokinin-signaling mutants are exposed to GB03 versus IN937a volatiles suggest a divergence in chemical signaling for these two bacterial strains. To provide a comprehensive chemical profile of bacterial volatiles emitted from these biologically active strains, headspace solid phase microextraction (SPME) coupled with software extraction of overlapping GC-separated components was employed. Ten volatile metabolites already reported from GB03 and IN937a were identified as well as 28 compounds not previously characterized. Most of the newly identified compounds were branched-chain alcohols released from IN937a, at much higher levels than in GB03. Principal component analysis clearly separated GB03 from IN937a, with GB03 producing higher amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and butane-1-methoxy-3-methyl. The branched-chain alcohols share a similar functional motif to that of 2,3-butanediol and may afford alternative structural patterns for elicitors from bacterial sources.  相似文献   

4.
Jasmonates (JAs) are lipid-derived compounds acting as key signaling compounds in plant stress responses and development. The JA co-receptor complex and several enzymes of JA biosynthesis have been crystallized, and various JA signal transduction pathways including cross-talk to most of the plant hormones have been intensively studied. Defense to herbivores and necrotrophic pathogens are mediated by JA. Other environmental cues mediated by JA are light, seasonal and circadian rhythms, cold stress, desiccation stress, salt stress and UV stress. During development growth inhibition of roots, shoots and leaves occur by JA, whereas seed germination and flower development are partially affected by its precursor 12-oxo-phytodienoic acid (OPDA). Based on these numerous JA mediated signal transduction pathways active in plant stress responses and development, there is an increasing interest in horticultural and biotechnological applications. Intercropping, the mixed growth of two or more crops, mycorrhization of plants, establishment of induced resistance, priming of plants for enhanced insect resistance as well as pre- and post-harvest application of JA are few examples. Additional sources for horticultural improvement, where JAs might be involved, are defense against nematodes, biocontrol by plant growth promoting rhizobacteria, altered composition of rhizosphere bacterial community, sustained balance between growth and defense, and improved plant immunity in intercropping systems. Finally, biotechnological application for JA-induced production of pharmaceuticals and application of JAs as anti-cancer agents were intensively studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号