首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of tumor necrosis factor (TNF)/cachectin on follicle-stimulating hormone (FSH)-induced aromatase activity in cultured rat granulosa cells using the stereospecific transfer of 3H from [1 beta-3H] androstenedione into 3H2O. TNF (10 pg/ml-10 ng/ml) inhibited FSH (250 ng/ml)-induced aromatase activity in a concentration-dependent manner, and 10 ng/ml of TNF completely abolished the FSH-induced aromatase activity. A time course analysis of the effects of TNF showed that TNF had no effect on induced aromatase activity, but inhibited the further induction of the enzyme by FSH. TNF (10 ng/ml) also inhibited the ability of TGF beta (1 ng/ml) to enhance aromatase activity and increase progesterone synthesis. Thus, TNF is a component of the complex array of proteins that modulate ovarian function and, as such, may play a physiological role in the regulation of the granulosa cell. In view of its association with cachexia, it may also play a pathophysiological role in the suppression of reproductive function during chronic illness.  相似文献   

2.
Granulosa cells produce inhibin and activin, proteins implicated in the local regulation of preovulatory follicular development. To assess interactions among FSH, LH, inhibin and activin on primate granulosa cell aromatase activity, we studied primary granulosa cell cultures from the ovaries of the common marmoset (Callithrix jacchus), a monkey with an ovarian cycle similar in length to the human cycle. The distinctive action of activin was augmentation of gonadotropin-responsive aromatase activity throughout antral follicular development. FSH-stimulated aromatase activity in granulosa cells from immature follicles was augmented many fold by picomolar amounts of activin. In cell cultures from preovulatory follicles, the presence of activin stimulated basal aromatase activity in the absence of gonadotropin, as well as augmenting the action of LH. Thus, locally produced activin has the potential to modulate aromatase activity in developing ovarian follicles. By contrast, inhibin or inhibin -subunit purified from bovine follicular fluid had minimal effects on aromatase activity. The only significant effect was slight suppression of FSH-inducible aromatase activity in granulosa cells from immature follicles at an inhibin concentration of 100 ng/ml. The finding that inhibin has a negligible effect on aromatase activity in granulosa cells from mature follicles suggests that it is unlikely to exert a physiologically significant influence on aromatase activity in vivo. However, evidence from other studies suggests that inhibin might affect aromatization indirectly through acting locally to modulate thecal androgen (aromatase substrate) production. Therefore, both inhibin and activin have the potential to contribute at different levels to paracrine and autocrine regulation of follicular oestrogen synthesis.  相似文献   

3.
We have recently observed that attomolar concentration of exogenously added TGF beta, a molecule structurally related to inhibin, can stimulate the basal secretion of FSH in a pituitary cell culture. Inhibin purified from porcine follicular fluid antagonizes this activity of TGF beta. To understand further the homeostatic regulatory properties of inhibin and TGF beta we have investigated whether the aromatase activity of ovarian granulosa cells is also subject to intra-ovarian modulation by these peptides. Granulosa cells from immature hypophysectomized diethylstilbestrol-treated rats were cultured for 2 days with androstenedione (10(-7) M) as a substrate, oFSH (2 ng), and different amounts of TGF beta or inhibin. Basal estrogen secretion was negligible and remained unaffected by treatment with purified TGF beta or inhibin (10 ng/ml), whereas treatment with oFSH (2 ng/ml) produced a 100-fold increase in estrogen accumulation. The concurrent application of increasing concentrations (10 pg-10 ng/ml) of TGF beta produced dose-dependent increments in the FSH-stimulated accumulation of estrogen with a ED50 of 0.3 +/- 0.02 ng/ml. On the other hand, concurrent incubation of FSH with inhibin ranging from 10 pg to 10 ng/ml decreases the FSH-mediated estrogen secretion. TGF beta antagonizes the inhibition of inhibin on aromatase activity. These findings suggest that inhibin and TGF beta, two closely related molecules, play novel and opposite roles in modulating the follicular functions.  相似文献   

4.
No detectable amounts of inhibin were produced by cultured ovarian stroma or luteal tissue. Follicular tissue produced inhibin in vitro and removal of the granulosa cells from the follicle wall caused inhibin production to fall by 80%. Granulosa cells alone had the greatest ability of any ovarian cell type to produce inhibin in vitro, and are probably the major site of follicular inhibin production. Cyproterone acetate at concentrations of 35 and 350 microM inhibited basal and testosterone (3.5 microM)-stimulated inhibin production by cultured intact follicle wall and granulosa cells. In addition, each concentration of cyproterone acetate inhibited progesterone but not oestradiol-17 beta production by the follicle wall and granulosa cell cultures. The synthetic, non-aromatizable androgens, methylestrenolone and mesterolone, at concentrations of 5 and 25 microM, mimicked the effect of testosterone and stimulated granulosa cell inhibin production, methylestrenolone being the more potent. These findings provide further evidence that androgens regulate follicular inhibin and progesterone production and that these may be receptor-mediated processes, and suggest that inhibin production may be a general property of androgenic compounds. Preliminary examination of the physicochemical characteristics of inhibin indicated that the inhibin activity of bovine granulosa cell culture medium was (a) retained by an Amicon XM100A filter with a nominal molecular weight cut-off point of 100 000; and (b) destroyed by heating to 80 degrees C for 30 min.  相似文献   

5.
Effects of interleukin-1 (IL-1) on FSH-induced differentiation of immature porcine granulosa cells in vitro were examined in short-term (48-h) cultures. IL-1 inhibited FSH induction of aromatase activity and of LH-stimulated cAMP accumulation by granulosa cells. Both these inhibitory actions of IL-1 were concentration-dependent. Significant inhibitory effects were observed with as low as 0.05-0.25 ng/ml of IL-1, with maximal effects at 25 ng/ml. IL-1 also significantly inhibited increases in [125I]iodo-LH binding and progesterone secretion induced by FSH, as well as reducing basal levels of aromatase activity and LH-stimulated cAMP accumulation. Studies on the mechanisms of IL-1 actions on FSH-induced differentiation of immature porcine granulosa cells revealed that IL-1 reduced cAMP accumulation by the cells in response to FSH in a time- and concentration-dependent manner. IL-1 also inhibited induction of aromatase activity and LH-stimulated cAMP accumulation induced by dibutyryl cAMP, suggesting that IL-1 also affects the steps distal to cAMP generation. In contrast, IL-1 had no effect on progesterone secretion induced by dibutyryl cAMP, suggesting that post-cAMP steps of progesterone secretion were unaffected by IL-1.  相似文献   

6.
The effect of follistatin on activin-induced granulosa cell differentiation was investigated in freshly harvested granulosa cells from diethylstilbestrol (DES)-treated rats. Activin induced a remarkable change in granulosa cellular morphology from elongated fibroblast-like to round cells, which follistatin prevented. Follistatin itself had no influence on the cellular morphology. We studied the action of follistatin on activin-induced differentiation of granulosa cells cultured in a chemically defined medium. Addition of activin (30 ng/ml) to the culture increased the FSH binding site approximately 2-fold compared with the control (spontaneous expression) level, whereas follistatin reduced the activin-induced expression level to the control level in a concentration-dependent manner. Activin (30 ng/ml) markedly augmented FSH-induced hCG binding and progesterone production by approximately 20-fold, and these effects were suppressed by follistatin in a concentration-dependent manner. Similarly, addition of follistatin to the culture induced a concentration-dependent decrease of activin-enhanced inhibin-producing activity, but had no effect on FSH-induced inhibin production. These results suggest that follistatin/activin-binding protein binds to activin stoichiometrically to suppress the activin-induced differentiation of rat granulosa cell in vitro, but follistatin itself has no direct effect on activin-independent reactions.  相似文献   

7.
Chang WY  Ohmura H  Kulp SK  Lin YC 《Theriogenology》1993,40(4):699-712
Transforming growth factor-beta (TGF-beta) is a potential regulator of ovarian function and follicular development. It is speculated that TGF-beta mediates the events in the follicle which culminate in ovulation of the oocyte. The complex processes which ultimately leads to this natural phenomenon must involve interactions between the 2 major follicular cell types, theca and granulosa cells, and the oocyte. Furthermore, a complex local regulatory system must exist to determine which follicles should undergo development and, eventually, which of those should ovulate or undergo atresia. To begin to understand this perplexing process, we must first understand the variables which control the function of each individual cell type. This study investigated the effect of TGF-beta(1) on FSH-induced porcine granulosa cell differentiation in vitro. Transforming growth factor-beta(1) was shown to inhibit progesterone production at high concentrations (0.1 and 10.0 ng/ml) after 12-, 24- and 48-hour treatment. However, TGF-beta(1) produced a biphasic effect on FSH-induced progesterone production during the 12-hour interval between the 36- and 48- hour treatment periods; TGF-beta(1) stimulated progesterone production at a low concentration (0.001 ng/ml) and inhibited production at high concentrations (0.1 and 10.0 ng/ml). The results obtained from the biphasic effect were not observed during any of the other incubation periods or intervals investigated. These results show that TGF-beta(1) has opposing effects on the differentiation of porcine granulosa cells as compared with those on rat granulosa cells. Moreover, TGF-beta(1) can produce opposing effects within the porcine granulosa cell itself which are specific to the concentration and treatment period used. The results of this study seem to suggest that TGF-beta(1) is species- and time-specific in its regulatory actions on FSH-induced porcine granulosa cell differentiation.  相似文献   

8.
Melatonin, at concentrations and periods of exposure reflecting those present during the circadian cycle, was investigated for its influence on steroid production by granulosa cells cultured in serum-supplemented medium. At high (200 pg/ml) but not low (20 pg/ml) physiological concentrations, melatonin significantly stimulated progesterone production by human granulosa cells. This response was independent of the overall level of cell activity and was seen under the different culture conditions associated with different culture media. Exposure to melatonin for 8 h significantly stimulated progesterone secretion to a level similar to that achieved under continuous exposure, and the effect was reduced to control levels during subsequent periods in which no melatonin was added. Melatonin had no consistent effect on aromatase activity in the conversion of stored or serum-available androgen to oestradiol. Melatonin significantly stimulated progesterone production by bovine granulosa cells in vitro, at concentrations similar to those present during the endogenous nocturnal rise (100-400 pg/ml). This response to physiological conditions by human and bovine cells suggests a role for melatonin in the regulation of progesterone production by the ovary.  相似文献   

9.
Erythroid differentiation factor (EDF), inhibin beta A-homodimer, induced expression of follicle stimulating hormone receptors on rat granulosa cells prepared from diethylstilbestrol primed immature female rats. After 3 day incubation with EDF, the number of FSH receptors on the granulosa cells was increased to about 3.5 times of the control value in a dose dependent manner with an ED50 value of 61 ng/ml. On the other hand, EDF related peptides, i.e., bovine 32K Da inhibin A and TGF beta, had no effect on the FSH receptor induction. The present observation suggests that EDF may play a role in the initiation of the cytodifferentiation of ovarian granulosa cells.  相似文献   

10.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

11.
Akira A  Ohmura H  Uzumcu M  Araki T  Lin YC 《Theriogenology》1994,41(7):1489-1497
The present study investigated whether gossypol inhibited aromatase activity in cultured porcine granulosa cells. Aromatase activity was assayed by measuring (3)H-H(2)O released from [1beta-(3)H]-androstenedione. First, immature porcine granulosa cells were cultured with various doses of follicle stimulating hormone (FSH, 1 to 1000 ng/ml) for 1 to 5 d to determine optimal culture conditions for aromatase activity assay. Second, porcine granulosa cells were cultured with or without FSH in the presence or absence of gossypol. Gossypol, at 4 muM, significantly inhibited FSH-induced aromatase activity while showing no effect on basal aromatase activity. Gossypol did not inhibit cell proliferation during cell culture. These results suggest that gossypol inhibits aromatase activity by interfering with FSH induction of aromatase in cultured porcine granulosa cells.  相似文献   

12.
The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E(2)), and progesterone (P(4)) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E(2), and P(4) and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E(2) (4.6-fold), and P(4) (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E(2) (P < 0.05) but enhanced IGF-induced P(4) secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.  相似文献   

13.
We have previously shown that basic fibroblast growth factor (bFGF) inhibits the FSH-induced differentiation of cultured rat granulosa cells, as manifested by prominent reduction of the LH receptor expression. We now investigate the possible sites and mechanism of action of bFGF. Whereas bFGF decreased the cAMP formation induced by FSH, it enhanced the cAMP production caused by cholera toxin and forskolin, suggesting that bFGF exerted its inhibitory action on cell differentiation at a step to cAMP production. Photoaffinity labeling with 8-azido-[32P]cAMP revealed that bFGF markedly reduced the FSH-induced increase in the level of regulatory subunit RII beta of the cAMP-dependent protein kinase (PKA) type II. In contrast to its striking effect on RII beta expression (70-80% inhibition), bFGF decreased PKA enzymatic activity by only 30%. On the other hand, transforming growth factor-beta (TGF beta) slightly amplified the stimulatory action of FSH and antagonized the bFGF inhibitory effect on both LH receptor expression and RII beta synthesis. We report that the protein kinase C (PKC) activator 12-O-tetradecanoylphorbol-13-acetate (TPA), which impaired granulosa cell differentiation, also abolished the RII beta synthesis induced by FSH. The activation of PKC by bFGF in granulosa cells was supported by the following findings: (i) bFGF markedly enhanced the production of diacylglycerol (2.3-fold stimulation at 5 min), the intracellular activator of PKC; (ii) bFGF promoted tight association of PKC to cellular membranes, a process that is believed to correlate with the enzyme activation; (iii) bFGF induced the phosphorylation of an endogenous M(r) 78,000/pI 4.7 protein that appears as a specific PKC substrate; (iv) bFGF mimicked the TPA-induced transmodulation of the epidermal growth factor (EGF) receptor, reducing by 36% the 125I-EGF binding on granulosa cells. We conclude that bFGF may exert its repressive action on RII beta synthesis, PKA activity, and granulosa cell differentiation by primarily targeting PKC activation.  相似文献   

14.
15.
The objective of this study was to assess the effect of ovine follicular fluid (FF) treatment (with or without FSH replacement) during the late follicular phase on plasma concentrations of gonadotrophins and the development of the ovulatory follicle. Ovarian steroid secretion and expression of mRNA encoding inhibin alpha and beta A, beta B subunits, P450 aromatase and P450 17 alpha-hydroxylase were used as endpoints. After induction of luteolysis by injection of 100 micrograms cloprostenol on days 10-12, Scottish Blackface ewes were allocated to one of three groups: (1) control (n = 7): no further treatment; (2) FF (n = 9): subcutaneous injections of 3 ml steroid-free ovine follicular fluid at 9 h intervals, 18 and 27 h after cloprostenol injection; (3) FF + FSH (n = 8): injections of follicular fluid as above plus subcutaneous injections of 0.36 iu ovine FSH at 6 h intervals, 18, 24, and 30 h after cloprostenol injection. Jugular venous blood samples were obtained via indwelling cannulae at 6 h intervals from 0 to 36 h after cloprostenol injection, and at 10 min intervals from 12 to 18 h (control phase) and from 30 to 36 h after cloprostenol injection (treatment phase). At laparotomy, 36 h after cloprostenol injection, ovarian venous blood was collected and ovaries were removed and processed for in situ hybridization. Plasma concentrations of FSH, luteinizing hormone (LH) and oestradiol were determined by radioimmunoassay. Follicular fluid treatment resulted in a decrease (P < 0.001) in FSH concentrations associated with an acute decrease in ovarian steroid secretion (P < 0.01) and a specific depression in P450 aromatase, (P < 0.001), inhibin-activin beta B subunit (P < 0.05) and thecal LH receptor (P < 0.001) expression. Follicular fluid treatment had no effect on inhibin-activin alpha and beta A, subunit or P450 17 alpha-hydroxylase expression. FSH co-treatment with follicular fluid restored circulating FSH concentrations to normal values and reversed some of the effects of follicular fluid (androstenedione, testosterone and progesterone secretion, and inhibin beta B and thecal LH receptor expression) but not oestradiol secretion or P450 aromatase expression. It was concluded that the actions of follicular fluid are mediated via both central effects on pituitary FSH secretion and by direct ovarian effects on granulosa cell aromatase activity. The results indicate that follicular fluid contains a factor that inhibits aromatase activity of granulosa cells directly and may play a role in the selection of the dominant follicle.  相似文献   

16.
This study describes the effects of insulin, insulin-like growth factor 1 (IGF1), and epidermal growth factor (EGF) on the aromatase activity of granulosa cells isolated from immature rat ovaries. None of the growth factors alone influenced the basal level of aromatase activity, but did modulate follicle-stimulating hormone (FSH)-induced aromatase activity. Insulin and IGF1 augmented the action of a sub-optimal concentration of FSH (5 ng/mL) on aromatase activity in a dose-dependent manner. In contrast, EGF (1–10 ng/mL) was effective in inhibiting aromatase activity maximally stimulated by FSH. Since insulin and IGF1 had opposing actions to those of EGF on FSH-induced aromatase activity, we examined the interactions between the growth factors. EGF inhibited the actions of both FSH and insulin on aromatase activity. Both IGF1 and EGF increased the [3H]thymidine incorporation into the DNA of bovine granulosa cells , IGF1 being a more potent mitogen. Whereas EGF inhibited the actions of IGF1 on aromatase activity, it did not inhibit the effects of IGF1 on the growth of granulosa cells. In summary, growth factors influence both the differentiation and growth of granulosa cells, and may be important regulators of follicular development.  相似文献   

17.
The effects of glucocorticoids on the steroidogenesis of ovarian granulosa cells were investigated. Cortisol and dexamethasone inhibited the increase in aromatase activity induced by FSH in cultured rat granulosa cells. In the same cultures progesterone production was stimulated to a maximum of 167% of the control level. This differential effect of glucocorticoids on estrogen and progesterone production by the granulosa cells indicates that glucocorticoids exert specific inhibition of the induction of aromatase by FSH and do not cause a general suppression of granulosa cell activity. In contrast to their inhibition of the FSH induction of aromatase enzymes, glucocorticoids did not interfere with the activity of pre-existing aromatase enzymes. In granulosa cells containing fun aromatase activity, treatment with cortisol and dexamethasone did not inhibit aromatization of androstenedione to estrogens whereas two known aromatase inhibitors (dihydrotestosterone and 4-androstene-3, 6, 17-trione) were effective. These results indicate that the glucocorticoids exert a selective inhibition of the FSH-induction of aromatase activity in rat granulosa cells by a mechanism other than directly interfering with the aromatization reaction.  相似文献   

18.
In situ hybridization was used on frozen tissue sections with digoxigenin-labelled antisense riboprobes to inhibin/activin alpha and beta(A) subunits to determine whether inhibin/activin subunit mRNA expression was associated with development of growing, steroidogenically active follicles during follicle recruitment after ovulation. Cell proliferation-associated nuclear antigen Ki-67 protein and cytochrome P450 aromatase expression in granulosa cells were determined immunohistochemically and used as markers for granulosa cell proliferation and steroidogenesis, respectively, on days 3, 5 and 7 after the onset of oestrus. The amounts of inhibin/activin alpha and beta(A) subunit mRNA and P450 aromatase protein were greater (102, 93, and 238%, respectively; P < 0.05) in medium than in small non-atretic follicles and were positively correlated with Ki-67 and with each other. Inhibin/activin alpha and beta(A) mRNA, P450 aromatase, and Ki-67 in granulosa cells were reduced by 66-83% (P < 0.001) in atretic follicles compared with non-atretic follicles. In addition, inhibin/activin alpha and beta(A) mRNA and P450 aromatase in small (1-2 mm) non-atretic follicles decreased (P < 0.05) between day 3 and day 7 independently of morphological or biochemical signs of atresia. The pattern of inhibin/activin subunit mRNA expression supports the notion that activin and inhibin have roles in growth and steroidogenesis in follicle recruitment during the early luteal phase of the oestrous cycle.  相似文献   

19.
The relative aromatizing ability of bovine luteinizing granulosa cells and dispersed luteal cells in tissue culture was studied. Luteinization of granulosa cells, as indicated by steadily increasing progesterone production (from 50 to 300 ng/10(5) cells/day over 4--5 days), was accompanied by a dramatic reduction in their capacity to aromatize exogenous androgen; oestradiol-17 beta production falling from 200 to less than 10 ng/10(5) cells/day over 4--5 days. Luteal cells also had only a very limited capacity to aromatize exogenous androgen, maximum oestradiol-17 beta production being less than 600 pg/10(5) cells/day. The loss in aromatizing capacity of granulosa cells during luteinization was also reflected in the relative endogenous steroid content of non-luteinized granulosa cells and luteal tissue, the former containing high levels of oestradiol-17 beta, less than or equal to 28 ng/mg protein, while the latter, although containing substantial amounts of testosterone, less than or equal to 5.7 ng/g tissue, contained very little oestradiol-17 beta, less than or equal to 0.35 ngG TISSUE. These findings suggest that luteinization of bovine granulosa cells and subsequent corpus luteum formation is associated with a loss in androgen aromatase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号