首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bombesin-like immunoreactivity (BLI) has been demonstrated in neurons of the gastrointestinal tract and gastric BLI secretion can be demonstrated in response to the classical neurotransmitter acetylcholine. Since structurally related peptides VIP, PHI and GRF have to be considered as peptidergic neurotransmitters it was of interest to determine their effect on gastric BLI secretion. Additionally, somatostatin (SLI) and gastrin secretion was examined. The isolated stomach of overnight fasted rats was perfused with Krebs-Ringer buffer via the celiac artery and the effluent was collected via the portal vein. The gastric lumen was perfused with isotonic saline at pH7 or pH2. All four peptides were tested at a dose of 10(-11) M and 10(-8) M at both pH levels and in addition the effect of VIP and PHI was examined at 10(-14) M and 10(-12) M during luminal pH2. At luminal pH7 VIP and PHI stimulated SLI release at 10(-8) M but had no effect on BLI or gastrin secretion. rGRF and hpGRF were both ineffective on SLI and gastrin release while rGRF inhibited and hpGRF stimulated BLI secretion. This effect was not dose related. At luminal pH2 all four peptides stimulated BLI secretion. Stimulation by PHI was already observed at a dose of 10(-14) M while VIP elicited a stimulatory effect at 10(-12) M. PHI at the two lowest concentrations of 10(-14) and 10(-12) M elicited a stimulation of SLI and gastrin release while the same doses of VIP and the higher doses of all four peptides had no effect on SLI and gastrin secretion at an acidic intraluminal pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Gastric secretion of hydrochloric acid requires protons and chloride, yet the mechanisms and regulation of gastric chloride secretion remain unclear. We developed an in vivo technique to simultaneously measure acid/base and chloride secretion into the gastric lumen of anesthetized rats. The cannulated stomach lumen was perfused with weakly pH-buffered chloride-free solution containing a chloride-sensitive fluorophore [5 microM N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE)]. Gastric acid and chloride secretion was detected in gastric effluents by 1) flow-through pH electrode and 2) MQAE fluorescence. Gastric effluent was also collected at 1-min intervals for independent determination of chloride amount by chloridometer. In all conditions, both optical and chemical determinations of chloride report similar amounts of secreted chloride. During luminal perfusion with pH 5 solution, net acid and chloride secretion into the lumen was observed. Pentagastrin stimulated both secretions. In contrast, proton pump inhibition (omeprazole) caused alkalinization of the gastric effluent, but chloride secretion was not diminished. During luminal pH 3 perfusion, net alkali secretion was observed, and chloride secretion at luminal pH 3 was greater than pH 5. When tissue is pretreated with omeprazole at luminal pH 3, the addition of prostaglandin E2 synchronously stimulates both alkali and chloride secretion. Results suggest that both acid and alkali secretions are separately coupled with chloride secretion.  相似文献   

3.
Gut lumen is continually exposed to a great variety of agents, including noxious compounds. Chemical receptors that detect the luminal environment are thought to play an important role as sensors and to modulate gastrointestinal functions. Recently, it has been reported that odorant receptors (ORs) are expressed in the small intestinal mucosa and that odorants stimulate serotonin secretion. However, ion transport in the responses to odorants has rarely been discussed, particularly in relation to the large intestine. In the present study, we examined the effects of the OR ligand thymol on ion transport in human and rat colonic epithelia using an Ussing chamber. In the mucosal-submucosal preparations, the mucosal addition of thymol evoked anion secretion concentration dependently. In addition, dextran (4 kDa) permeability was enhanced by the mucosal treatment with thymol. The response to thymol was not affected by tetrodotoxin (TTX) or piroxicam treatments in human or rat colon. Thymol-evoked electrogenic anion secretion was abolished under Ca(2+)-free conditions or mucosal treatment with transient receptor potential (TRP) A1 blocker (HC-030031). Pretreatment of thymol did not affect electrical field stimulation-evoked anion secretion but significantly attenuated short-chain fatty acid-evoked secretion in a concentration-dependent manner. OR1G1 and TRPA1 expression was investigated in isolated colonic mucosa by RT-PCR. The present results provide evidence that the OR ligand thymol modulates epithelial permeability and electrogenic anion secretion in human and rat colon. The anion secretion by luminal thymol is most likely mediated by direct activation of TRPA1 channel. We suggest that the sensing and responding to odorants in the colon also plays a role in maintaining intestinal homeostasis.  相似文献   

4.
We show here that luminal mucus from the colon and the stomach of guinea pigs, mice and humans exhibits substantial carbonic anhydrase (CA) activity, by which the velocity of the CO(2) hydration reaction is accelerated 1000-2000-fold, approximately 1/10 of what is found in the red cell. Although this CA shares several properties with CA II, studies with CA II-deficient mice show that gastrointestinal mucus CA is not affected in these animals and thus does not appear to be CA II. We speculate that the mucus layer covering the luminal surface of gastrointestinal epithelium can, due to the presence of CA, maintain a normal tissue pCO(2) in the epithelium, even when the pCO(2) values in the lumen are much higher, as is known for stomach and colon. To test this hypothesis, we have developed a mathematical model which describes (a) diffusion of CO(2) and HCO(3)(-) across the mucus layer and (b) H(+) transport mediated by continuous secretion of mucus, which due to its high H(+) buffer capacity transports H(+) by convection towards the lumen. The model predicts that continuous transport of the reaction products of CO(2) towards the lumen, by diffusion and convection, protects the epithelium against high CO(2) partial pressures in the lumen.  相似文献   

5.
Intestinal secretion is a normal phenomenon, indispensible to solubilize and dilute nutrients and to maintain fluidity in the intestinal lumen. Enterotoxins and certain drugs may disrupt the proabsorptive status maintained by the small intestine under physiologic conditions. Hormones found in nervous and specialized intestinal enterochromaffin cells are responsible, in part, for secretion of fluid into the lumen. Afferent vagal nerve impulses mediated by 5-hydroxytryptamine (serotonin; 5-HT), vasoactive intestinal peptide (VIP) and substance P are the major agents of secretory stimulation. Toxins from pathogenic bacteria, especially some strains of E. coli and V. cholerae, trigger a secretory response and a chain of events involving cGMP and cAMP which result in chloride secretion, coupled to sodium and fluid efflux into the lumen. If secretion is unchecked by natural mechanisms or medications, the consequences are diarrhea, with potential dehydration, hyponatremia and ultimately death. Introduction of absorbable nutrients in the intestinal lumen has a major antisecretory action, both by a nutrient-gene interaction and by proabsorptive hormone expression. In additon, during the absorptive process water is carried into the enterocyte together with solutes. Hydrolysis-resistant peptides of dietary origin and ingested soluble fiber may also have a proabsorptive effect. The gastrointestinal system has a variety of antisecretory or proabsorptive hormonal and protein agonists that balance the outflow of fluid and electrolytes. The more extensively studied are neuropeptide Y/peptide YY (NPY/PYY) and the antisecretory factor (AF). Nitric oxide (NO), a short-lived second messenger, has a major role in secretion by activating cGMP. The intracellular concentration of NO may regulate the absorptive/secretory status of the small intestine, either stimulating absorption or inducing secretion. Specifically targeted 5-HT receptor antagonist drugs and other pharmacologic agents have been clinically tried for the treatment of severe diarrhea, drug-induced malabsorption and reversal of cellular damage.  相似文献   

6.
The exposure of anionic phospholipidson the external surface of injured endothelial cells and activatedplatelets is a primary biological signal to initiate blood coagulation.Disease conditions that promote the formation of ectopic thrombi resultin tissue ischemia. Annexins, Ca2+-dependentanionic phospholipid binding proteins, are potential therapeutic agentsfor the inhibition of coagulation. We have designed a transgene thattargets secretion of annexin V from cultured thyroid cells under thecontrol of doxycycline. Our results indicate that annexin V in theendoplasmic reticulum (ER)/Golgi lumen does not affect the synthesis,processing, and secretion of thyroglobulin. ER luminal Ca2+was moderately increased and can be released by inositol1,4,5-trisphosphate. Our study demonstrates that targeting andsecretion of annexin V through the secretory pathway of mammalian cellsdoes not adversely affect cellular function. Regulated synthesis andrelease of annexin V may exert anticoagulatory and anti-inflammatoryeffects systemically and may prove useful in further developingtherapeutic strategies for conditions including antiphospholipid syndrome.

  相似文献   

7.
Our previous report showed gastric mucosal surface pH was determined by alkali secretion at intragastric luminal pH 3 but by acid secretion at intragastric pH 5. Here, we question whether regulation of mucosal surface pH is due to the effect of luminal pH on net acid/base secretions of the whole stomach. Anesthetized rats with a gastric cannula were used, the stomach lumen was perfused with weakly buffered saline, and gastric secretion was detected in the gastric effluent with 1) a flow-through pH electrode and 2) a fluorescent pH-sensitive dye (Cl-NERF). During pH 5 luminal perfusion, both pH sensors reported the gastric effluent was acidic (pH 4.79). After perfusion was stopped transiently (stop-flow), net acid accumulation was observed in the effluent when perfusion was restarted (peak change to pH 4.1-4.3). During pH 3 luminal perfusion, both pH sensors reported gastric effluent was close to perfusate pH (3.0-3.1), but net alkali accumulation was detected at both pH sensors after stop-flow (peak pH 3.3). Buffering capacity of gastric effluents was used to calculate net acid/alkaline secretions. Omeprazole blocked acid secretion during pH 5 perfusion and amplified net alkali secretion during pH 3 perfusion. Pentagastrin elicited net acid secretion under both luminal pH conditions, an effect antagonized by somatostatin. We conclude that in the basal condition, the rat stomach was acid secretory at luminal pH 5 but alkaline secretory at luminal pH 3.  相似文献   

8.
Family with sequence similarity 20C (Fam20C), the physiological Golgi casein kinase, phosphorylates numerous secreted proteins that are involved in a wide variety of biological processes. However, the role of Fam20C in regulating proteins in the endoplasmic reticulum (ER) lumen is largely unknown. Here, we report that Fam20C interacts with various luminal proteins and that its depletion results in a more reduced ER lumen. We further show that ER oxidoreductin 1α (Ero1α), the pivotal sulfhydryl oxidase that catalyzes disulfide formation in the ER, is phosphorylated by Fam20C in the Golgi apparatus and retrograde‐transported to the ER mediated by ERp44. The phosphorylation of Ser145 greatly enhances Ero1α oxidase activity and is critical for maintaining ER redox homeostasis and promoting oxidative protein folding. Notably, phosphorylation of Ero1α is induced under hypoxia, reductive stress, and secretion‐demanding conditions such as mammalian lactation. Collectively, our findings open a door to uncover how oxidative protein folding is regulated by phosphorylation in the secretory pathway.  相似文献   

9.
Guanylin and related peptides.   总被引:4,自引:0,他引:4  
Guanylin and uroguanylin are short peptides homologous to heat-stable enterotoxins of Escherichia coli and other enteric bacteria. Guanylin and uroguanylin are synthetized from the respective prepropeptides mainly in gastrointestinal mucosa and are secreted both into intestinal lumen and into the blood. Luminally secreted peptides stimulate chloride and bicarbonate secretion in the intestine through the mechanism involving guanylate cyclase C receptor, cyclic GMP, protein kinase G and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Bacterial enterotoxins, which have greater potency than endogenous peptides, induce excessive fluid secretion into intestinal lumen leading to secretory diarhea. Uroguanylin is expressed mainly in enterochromaffin cells of duodenum and proximal small intestine whereas guanylin is abundant in goblet cells of colonic epithelium. Uroguanylin and guanylin increase urinary sodium and potassium excretion both as circulating hormones and as paracrine mediators produced within the kidney. Uroguanylin functions as "intestinal natriuretic hormone" which is secreted in response to oral sodium loading and maintains sodium balance during postprandial period. Plasma and urinary concentrations of guanylin and uroguanylin increase in renal failure and heart failure. Guanylin peptides possess antiproliferative activity in intestinal cells culture and their expression decreases in colonic carcinoma indicating that their deficiency may contribute to the pathogenesis of this disease.  相似文献   

10.
The effect of vagal stimulation in chloralose-anesthetized cats on release of vasoactive intestinal polypeptide into the jejunal lumen and portal venous blood was tested simultaneously, and the effect of atropine and hexamethonium was investigated to elucidate the regulatory mechanisms involved in the release. Vagal stimulation caused a significant increase in vasoactive intestinal polypeptide concentrations in the luminal perfusates. A significant concomitant increase was seen in portal plasma. Gel filtration chromatography of luminal and portal samples demonstrated that the vasoactive intestinal polypeptide coeluted with synthetic porcine vasoactive intestinal polypeptide. Vasoactive intestinal polypeptide infusion at 80 and 160 pmol/kg.min produced portal plasma levels of at least 3000 pM but did not increase vasoactive intestinal polypeptide concentrations in the luminal perfusates. Thus, luminal vasoactive intestinal polypeptide originates from gastrointestinal tissue rather than by transduction from the circulation. Vagally induced release of vasoactive intestinal polypeptide into the lumen and portal plasma was not abolished by atropine but was totally suppressed by hexamethonium. The regulatory mechanisms controlling the parallel release of vasoactive intestinal polypeptide into both the jejunal lumen and portal circulation are identical and involve a non-muscarinic process which is under cholinoceptive, nicotinic control.  相似文献   

11.
SO4(2-) transport by winter flounder intestine in Ussing chambers was characterized. With 50 mM SO4(2-) (physiological level) bathing the lumen, net absorption (lumen to blood) dominated. Under short-circuited conditions, 1 mM SO4(2-) on both sides, net active SO4(2-) secretion occurred (8.55 +/- 0.96 nmol. cm(-2). h(-1)). NaCN (10 mM), ouabain (10(-4) M), and luminal DIDS (0.2 mM) inhibited net secretion. Removal of luminal Cl- and HCO3- together (Cl--HCO3-) or Cl- alone blocked net secretion, whereas removal of luminal HCO3- alone increased net secretion. SO4(2-) uptake into foregut brush-border membrane vesicles was stimulated by a trans-Cl- gradient (in > out) and unaffected by a trans-HCO3- gradient (in > out). Short-circuiting with K+ (in = out) and valinomycin had no effect on Cl--stimulated SO4(2-) uptake, suggesting electroneutral exchange. Satiety (i.e., full stomach) stimulated the unidirectional absorptive flux, eliminating net secretion. It was concluded that the intestine is a site of SO4(2-) absorption in marine teleosts and that active SO4(2-) secretion is in exchange for luminal Cl-.  相似文献   

12.
Dietary transferrins are postulated to play a number of biological roles in the developing gastrointestinal tract. A prerequisite for such roles is survival in the gastrointestinal lumen. To evaluate luminal transferrin digestion during development, 125I-transferrin was incubated in vitro with luminal fluid from the stomach and small intestine of 12-day old suckling and 31-day old weanling rats, followed by analysis of degradation products. At both ages, the rate of degradation to trichloroacetic acid soluble material was maximum in the mid-jejunum and lowest in the stomach. Transferrin hydrolysis by weanling fluid was 2-10 times greater than suckling depending upon the particular segment. Chromatography of small intestinal reaction mixtures on Sephacryl S-200 revealed label eluting between intact transferrin and free iodine: two such peaks were generated with suckling fluid and one with weanling. Electrophoresis on SDS-polyacrylamide gels showed two major bands of Mr 69K and 20K; the former was the predominant reaction product with suckling intestinal fluid and the latter with weanling. Both methods showed small amounts of apparently intact transferrin. Results indicate substantial yet incomplete luminal degradation of transferrin which is more pronounced in the weanling than in the suckling. This survival is compatible with potential biological functioning of dietary transferrin or one of its breakdown products within the gastrointestinal tract.  相似文献   

13.
The proglucagon-derived peptide family consists of three highly related peptides, glucagon and the glucagon-like peptides GLP-1 and GLP-2. Although the biological activity of glucagon as a counter-regulatory hormone has been known for almost a century, studies conducted over the past decade have now also elucidated important roles for GLP-1 as an antidiabetic hormone, and for GLP-2 as a stimulator of intestinal growth. In contrast to pancreatic glucagon, the GLPs are synthesized in the intestinal epithelial L cells, where they are subject to the influences of luminal nutrients, as well as to a variety of neuroendocrine inputs. In this review, we will focus on the complex integrative mechanisms that regulate the secretion of these peptides from L cells, including both direct and indirect regulation by ingested nutrients.  相似文献   

14.
The intestinal mucosal barrier is the first line to defense against luminal content penetration and performs numerous biological functions. The intestinal epithelium contains a huge surface that is lined by a monolayer of intestinal epithelial cells (IECs). IECs are dominant mediators in maintaining intestinal homeostasis that drive diverse functions including nutrient absorption, physical segregation, secretion of antibacterial peptides, and modulation of immune responses. Autophagy is a cellular self-protection mechanism in response to various stresses, and accumulating studies have revealed its importance in participating physiological processes of IECs. The regulatory effects of autophagy depend on the specific IEC types. This review aims to elucidate the myriad roles of autophagy in regulating the functions of different IECs (stem cells, enterocytes, goblet cells, and Paneth cells), and present the progress of autophagy-targeting therapy in intestinal diseases. Understanding the involved mechanisms can provide new preventive and therapeutic strategies for gastrointestinal dysfunction and diseases.  相似文献   

15.
Proteome map of the chloroplast lumen of Arabidopsis thaliana.   总被引:13,自引:0,他引:13  
The thylakoid membrane of the chloroplast is the center of oxygenic photosynthesis. To better understand the function of the luminal compartment within the thylakoid network, we have carried out a systematic characterization of the luminal thylakoid proteins from the model organism Arabidopsis thaliana. Our data show that the thylakoid lumen has its own specific proteome, of which 36 proteins were identified. Besides a large group of peptidyl-prolyl cis-trans isomerases and proteases, a family of novel PsbP domain proteins was found. An analysis of the luminal signal peptides showed that 19 of 36 luminal precursors were marked by a twin-arginine motif for import via the Tat pathway. To compare the model organism Arabidopsis with another typical higher plant, we investigated the proteome from the thylakoid lumen of spinach and found that the luminal proteins from both plants corresponded well. As a complement to our experimental investigation, we made a theoretical prediction of the luminal proteins from the whole Arabidopsis genome and estimated that the thylakoid lumen of the chloroplast contains approximately 80 proteins.  相似文献   

16.
The effect of intravenous gastrointestinal peptide hormone administration on net fluid transport in the small intestine was assessed in the rat. An increased fluid content was observed during vasoactive intestinal peptide, gastric] inhibitory peptide, and neurotensin infusions, and a decreased content with somatostatin, substance P and pancreatic polypeptide, by comparison with the control series. Motilin had no significant effect on luminal fluid volume. These results suggest that several of the gastrointestinal regulatory peptides may have an influence on the processes of fluid absorption and secretion by the small intestine.  相似文献   

17.
Paneth cells at the base of small intestinal crypts secrete apical granules that contain antimicrobial peptides including alpha-defensins, termed cryptdins. Using an antibody specific for mouse cryptdin-1, -2, -3, and -6, immunogold-localization studies demonstrated that cryptdins are constituents of mouse Paneth cell secretory granules. Several cryptdin peptides have been purified from rinses of adult mouse small intestine by gel filtration and reverse-phase high performance liquid chromatography. Their primary structures were determined by peptide sequencing, and their antimicrobial activities were compared with those of the corresponding tissue forms. The isolated luminal cryptdins included peptides identical to the tissue forms of cryptdin-2, -4, and -6 as well as variants of cryptdin-1, -4, and -6 that have N termini truncated by one or two residues. In assays of antimicrobial activity against Staphylococcus aureus, Escherichia coli, and the defensin-sensitive Salmonella typhimurium phoP(-) mutant, full-length cryptdins had the same in vitro antibacterial activities whether isolated from tissue or from the lumen. In contrast, the N-terminal-truncated (des-Leu), (des-Leu-Arg)-cryptdin-6, and (des-Gly)-cryptdin-4 peptides were markedly less active. The microbicidal activities of recombinant cryptdin-4 and (des-Gly)-cryptdin-4 peptides against E. coli, and S. typhimurium showed that the N-terminal Gly residue or the length of the cryptdin-4 N terminus are determinants of microbicidal activity. Innate immunity in the crypt lumen may be modulated by aminopeptidase modification of alpha-defensins after peptide secretion.  相似文献   

18.
Net water, Na+, Cl- and HCO3- fluxes were measured in in vivo rabbit ileal loops, while mucus secretion was assessed by measuring the glycoprotein or total sialic acid secreted into the lumen, or by measuring the luminal fluid viscosity. Inoculating loops with cholera enterotoxin (CT) produced a sustained secretion of electrolytes and water, but a more transient secretion of mucus. A dose of verapamil was found which, when included in the luminal fluid, inhibited or delayed the CT-induced mucus secretion while not affecting the ongoing electrolyte and water secretion. Exposure of the ileal mucosa to the ionophore, A23187, in the presence of 2mM Ca++ resulted in a brief secretion of mucus, with no change in basal water absorption. Verapamil inhibited this A23187-induced mucus secretion. The ionophore was not effective in the absence of luminal Ca++. Thus rabbit ileum mucus secretion can be separated from electrolyte and water secretion by agents that affect Ca++ movement.  相似文献   

19.
Jaffe LF 《Cell calcium》2004,36(1):83-87
Fast (10-30 microm/s) calcium waves can be propagated through all nucleated eukaryotic cells that have been tested as well as certain cell-free extracts. In a widely used model, they are propagated by a reaction-diffusion cycle in which calcium ions diffuse along the outside of endoplasmic reticula and induce their own release from calsequestrin or calreticulin molecules stored within the reticulum's lumen. Here we propose a new tandem wave model in which they are also propagated by a reaction-diffusion cycle within a reticulum's lumen. In this cycle, increases in luminal [H(+)] induce proton release from luminal calsequestrin or calreticulin. The released protons diffuse ahead to where they release more protons from these luminal storage proteins. What might be called proton induced proton release. They also raise luminal electropositivity. The resultant luminal waves are coordinated with extrareticular ones by movements of calcium and hydrogen ions through the reticular membrane. This model makes five testable predictions which include the autorelease of protons in solutions of calsequestrins or calreticulins as well as waves of increased [H(+)], of increased [Ca(2+)] and of more positive voltage within the reticula of whole cells. Moreover, under some conditions, such luminal waves should cross regions without cytosolic ones.  相似文献   

20.
The adaptation to extrauterine nutrition involves complex physiological changes at birth which may be regulated by genetic endowment; enteral nutrients, secretions, and bacteria; and endogenous hormones and exogenous hormones in breast milk. The hypothesis is explored that enteral feeding after birth may trigger key adaptations in the gut and in metabolism partly through the mediation of gastrointestinal hormone secretion. Gut peptides are found in the early human fetal gut and by the second trimester some are found in high concentrations in the fetal circulation and amniotic fluid. Major plasma hormonal surges occur during the neonatal period in term and preterm infants: notably in enteroglucagon, gastrin, motilin, neurotensin, gastrointestinal peptide, and pancreatic polypeptide. These events do not occur in neonates deprived of enteral feeding. A progressive development of dynamic gut hormonal responses to feeding is observed. The pattern of gut endocrine changes after birth is influenced by the type and route of feeding. Potential pathophysiological effects of depriving high risk neonates of enteral feeding are considered. It is speculated that infants committed to prolonged total parenteral nutrition from birth may benefit from the biological effects of intraluminal nutrients used in subnutritional quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号