首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+-activated neutral proteinase was purified from rabbit skeletal muscle by a method involving DEAE-Sephacel chromatography, affinity chromatography on organomercurial–Sepharose and gel filtration on Sephacryl S-200 and Sephadex G-150. The SDS (sodium dodecyl sulphate)/polyacrylamide-gel-electrophoresis data show that the purified enzyme contains only one polypeptide chain of mol.wt. 73000. The purification procedure used allowed us to eliminate a contaminant containing two components of mol.wt. about 30000 each. Whole casein or α1-casein were hydrolysed with a maximum rate at 30°C, pH7.5, and with 5mm-CaCl2, but myofibrils were found to be a very susceptible substrate for this proteinase. This activity is associated with the destruction of the Z-discs, which is caused by the solubilization of the Z-line proteins. The activity of the proteinase in vitro is not limited to the removal of Z-line. SDS/polyacrylamide-gel electrophoresis on larger plates showed the ability of the proteinase to degrade myofibrils more extensively than previously supposed. This proteolysis resulted in the production of a 30000-dalton component as well as in various other higher- and lower-molecular-weight peptide fragments. Troponin T, troponin I, α-tropomyosin, some high-molecular-weight proteins (M protein, heavy chain of myosin) and three unidentified proteins are degraded. Thus the number of proteinase-sensitive regions in the myofibrils is greater than as previously reported by Dayton, Goll, Zeece, Robson & Reville [(1976) Biochemistry 15, 2150–2158]. The Ca2+-activated neutral proteinase is not a chymotrypsin- or trypsin-like enzyme, but it reacted with all the classic thiol-proteinase inhibitors for cathepsin B, papain, bromelain and ficin. Thus the proteinase was proved to have an essential thiol group. Antipain and leupeptin are also inhibitors of the Ca2+-activated neutral proteinase.  相似文献   

2.
3.
4.
An endogenous inhibitor of calcium-activated neutral protease (CANP), which was isolated from rabbit skeletal muscle under mild conditions, comprised high- and low-molecular-weight components. The latter (LMW-inhibitor; Mr=50,000) was purified to homogeneity by means of chromatography on DEAE-cellulose and phenyl-Sepharose CL-4B and chromatofocusing. The purified inhibitor is a protein composed of two polypeptide chains with molecular weights of 26,000 and 24,000 daltons. It contains large amounts of glutamic acid, alanine, and serine, and small amounts of aromatic amino acids. It was specific for CANPs having low (m-type) and high (mu-type) Ca2+-sensitivity, had no effect on any other protease examined (trypsin, alpha-chymotrypsin, bromelain, ficin, papain, thermolysin, etc.), and inhibited rabbit mCANP more effectively than rabbit muCANP or chicken mCANP. It was demonstrated that the inhibition is due to the formation of a stoichiometric complex between two molecules of rabbit mCANP and one inhibitor molecule.  相似文献   

5.
A protein inhibitor of the Ca2+-dependent proteinase has been purified from bovine cardiac muscle by using the following steps in succession: salting out 17,600 X gmax supernatants from muscle homogenates in 50 mM Tris acetate, pH 7.5, 4 mM EDTA between 25 and 65% ammonium sulfate saturation; eluting between 25 and 120 mM KCl from a DEAE-cellulose column at pH 7.5; salting out between 30 and 60% ammonium sulfate saturation; Ultrogel-22 gel permeation chromatography at pH 7.5; heating to 80 degrees C followed by immediate cooling to 0 degree C; 6% agarose gel permeation chromatography in 4 M urea, pH 7.5; and elution from a phenyl-Sepharose hydrophobic column between 0.7 and 0.5 M ammonium sulfate. Approximately 1.16-1.69 mg of purified Ca2+-dependent proteinase inhibitor are obtained from 1 kg of bovine cardiac muscle, fresh weight. Bovine cardiac Ca2+-dependent proteinase inhibitor has an Mr of 115,000 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a pI of 4.85-4.95, very little alpha-helical structure, a very low specific absorbance of 1.647 (A1% 280), and very low contents of histidine, tryptophan, phenylalanine, and tyrosine. Bovine cardiac Ca2+-dependent proteinase inhibitor probably contains a single polypeptide chain in nondenaturing solvents. One 115-kDa inhibitor polypeptide inactivates 10 110-kDa millimolar Ca2+-requiring proteinase (millimolar Ca2+-dependent proteinase) molecules in assays of purified proteins. Inhibition of millimolar proteinase by the proteinase inhibitor did not change in the pH range 6.2-8.6. The inhibitor requires Ca2+ to bind to millimolar Ca2+-dependent proteinase. The Ca2+ concentration required for one-half-maximum binding of millimolar Ca2+-dependent proteinase to the inhibitor was 0.53 mM, compared with a Ca2+ concentration of 0.92 mM required for one-half maximum activity of millimolar Ca2+-dependent proteinase in the absence of the proteinase inhibitor. Unless millimolar Ca2+-dependent proteinase is located subcellularly in a different place than the proteinase inhibitor or unless the proteinase/inhibitor interaction is regulated, millimolar proteinase could never be active in situ.  相似文献   

6.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ.  相似文献   

7.
Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic -cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM).  相似文献   

8.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:9,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

9.
10.
The study of Ca2+ sparks has led to extensive new information regarding the gating of the Ca2+ release channels underlying these events in skeletal, cardiac and smooth muscle cells, as well as the possible roles of these local Ca2+ release events in muscle function. Here we review basic procedures for studying Ca2+sparks in skeletal muscle, primarily from frog, as well as the basic results concerning the properties of these events, their pattern and frequency of occurrence during fiber depolarization and the mechanisms underlying their termination. Finally, we also consider the contribution of different ryanodine receptor (RyR) isoforms to Ca2+ sparks and the number of RyR Ca2+ release channels that may contribute to the generation of a Ca2+ spark. Over the decade since their discovery, Ca2+ sparks have provided a wealth of information concerning the function of Ca2+ release channels within their intracellular environment.  相似文献   

11.
A region in the skeletal muscle ryanodine receptor between amino acids 4014 and 4765 was expressed as a trpE fusion protein. Overlay studies revealed that this region bound Ca2+ and ruthenium red, an indicator of Ca(2+)-binding sites. Ca2+ binding was mapped to subregion 13b between amino acids 4246 and 4377, encompassing a predicted high affinity Ca(2+)-binding site, and to subregion 13c between amino acids 4364 and 4529, encompassing two predicted high affinity Ca(2+)-binding sites. Ca2+ binding was then mapped to three shorter sequences, 22(13b1), 36(13c1), and 35(13c2), amino acids long, each encompassing one of the three predicted Ca(2+)-binding sites. Site-directed polyclonal antibodies were raised against these three short sequences and purified on antigen affinity columns. The antibody against sequence 13c2, lying between residues 4478 and 4512, specifically recognized both denatured and native forms of the ryanodine receptor, suggesting that at least part of the 35 amino acid sequence containing the Ca(2+)-binding site is surface-exposed. The affinity purified antibody increased the Ca2+ sensitivity of ryanodine receptor channels incorporated into planar lipid bilayers, resulting in increased open probability and opening time without altering channel conductance. The antibody-activated channel was still modulated by Ca2+, Mg2+, ATP, ryanodine, and ruthenium red. These observations suggest that sequence 13c2 may be involved in Ca(2+)-induced Ca2+ release.  相似文献   

12.
Transverse tubule membranes isolated from rabbit skeletal muscle have high levels of a Ca2+- or Mg2+-ATPase with Km values for Ca-ATP or Mg-ATP in the 0.2 mM range, but do not display detectable levels of ATPase activity activated by micromolar [Ca2+]. The transverse tubule enzyme is less temperature or pH dependent than the Ca2+-ATPase of sarcoplasmic reticulum and hydrolyzes equally well ATP, ITP, UTP, CTP, and GTP. Of several ionic, non-ionic, and zwitterionic detergents tested, only lysolecithin solubilizes the transverse tubule membrane while preserving ATPase activity. After extraction of about 50% of the transverse tubule proteins by solubilization with lysolecithin most of the ATPase activity remains membrane bound, indicating that the Ca2+- or Mg2+-ATPase is an intrinsic membrane enzyme. A second extraction of the remaining transverse tubule proteins with lysolecithin results in solubilization and partial purification of the enzyme. Sedimentation of the Ca2+- or Mg2+-ATPase, partially purified by lysolecithin solubilization, through a continuous sucrose gradient devoid of detergent leads to additional purification, with an overall 3- to 5-fold purification factor. The purified enzyme preparation contains two main protein components of molecular weights 107,000 and 30,000. Cholesterol, which is highly enriched in the transverse tubule membrane, copurifies with the enzyme. Transverse tubule membrane vesicles also display ATP-dependent calcium transport which is not affected by phosphate or oxalate. The possibility that the Ca2+- or Mg2+-ATPase is the enzyme responsible for the Ca2+ transport displayed by isolated transverse tubules is discussed.  相似文献   

13.
Ca2+-dependent neutral proteinase purifies from human erythrocytes as an inactive proenzyme, that can be converted in an active low Ca2+ requiring form either by high concentrations of Ca2+ (0.1-1 mM) in the absence of the substrate, or by low concentrations of Ca2+ (1-5 microM) in the presence of digestible substrates. Activation requires dissociation to constituent inactive proenzyme subunits which are then converted to the active proteinase species still retaining their monomeric structure. The activation process produced by high Ca2+ concentrations is controlled by the endogenous inhibitor which also dissociates into constituent subunits in order to exert its inhibitory effect. An additional regulation of the activated proteinase involves an autoproteolytic process, Ca2+ and substrate dependent, producing enzyme inactivation.  相似文献   

14.
1. Two cysteine proteinase inhibitors, I-T (Mr = 29,000) and I-S (Mr = 10,700), were isolated from rabbit skeletal muscle by means of succesive extraction with a neutral buffer solution, precipitation at pH 3.7, acetone fractionation and gel permeation on Sephadex G-75. 2. I-T is a formed trimer of a monomeric inhibitor, I-M (Mr = 10,500), through disulfide bonds. 3. I-S is almost completely stable between pH 3 and 8, while I-M is unstable in the same pH range. 4. I-M acts most effectively towards cathepsins H and L, showing moderate activity towards cathepsin B and only weak activity towards papain. I-S acts most effectively towards cathepsin L, followed by, in decreasing order, cathepsin H, cathepsin B and papain.  相似文献   

15.
The effectiveness of the nonmetabolizable second messenger analogue DL-myo-inositol 1,4,5-trisphosphorothioate (IPS3) described by Cooke, A. M., R. Gigg, and B. V. L. Potter, (1987b. Jour. Chem. Soc. Chem. Commun. 1525-1526.) was examined in triads purified from rabbit skeletal muscle. A Ca2+ electrode uptake-release assay was used to determine the size and sensitivity of the IPS3-releasable pool of Ca2+ in isolated triads. Uptake was initiated by 1 mM MgATP, pCa 5.8, pH 7.5 Release was initiated when the free Ca2+ had lowered to pCa approximately 7. We found that 5-25 microM myo-inositol 1,4,5-trisphosphate (IP3), and separately IPS3, consistently released 5-20% of the Ca2+ pool actively loaded into triads. Single channel recording was used to determine if ryanodine receptor Ca2+ release channels were affected by IPS3 at the same myoplasmic Ca2+ and IPS3 concentrations. Open probability of ryanodine receptor Ca2+ release channels was monitored in triads fused to bilayers over long periods (200 s) in the absence and following addition of 30 microM IPS3 to the same channel. At myoplasmic pCa approximately 7, IPS3 had no effect in the absence of MgATP (Po = 0.0094 +/- 0.001 in control and Po = 0.01 +/- 0.006 after IPS3) and slightly increased activity in the presence of 1 mM MgATP (Po = 0.024 +/- 0.03 in control and Po = 0.05 +/- 0.03 after IPS3). Equally small effects were observed at higher myoplasmic Ca2+. The onset of channel activation by IPS3 or IP3 was slow, on the time scale 20-60 s. We suggest that in isolated triads of rabbit skeletal muscle, IP3-induced release of stored Ca2+ is probably not mediated by the opening of Ca2+ release channels.  相似文献   

16.
Abstract

Objective: Effect of peroxynitrite on SERCA1 activity was studied in correlation with enzyme carbonylation. Kinetic parameters and location of peroxynitrite effect on SERCA1 were determined.

Methods: Carbonyls were determined by immunoblotting. FITC, NCD-4 and Trp fluorescence were used to indicate changes in cytosolic and transmembrane regions of SERCA1.

Results: Peroxynitrite-concentration-dependent decrease of SERCA1 activity was associated with elevation of protein carbonyls. 4-HNE was not involved in carbonylation of SERCA1. Increased FITC fluorescence in the presence of peroxynitrite correlated with the decrease of the enzyme affinity to ATP.

Discussion and conclusion: Peroxynitrite-induced SERCA1 carbonylation that was not accompanied with the formation of 4-HNE-SERCA1 adducts is indicative of direct oxidation of SERCA1. As assessed by FITC fluorescence and decreased affinity of the enzyme to ATP, peroxynitrite impairment was found to occur in the cytosolic ATP-binding region of SERCA1.  相似文献   

17.
Ca2+ and activation mechanisms in skeletal muscle   总被引:12,自引:0,他引:12  
  相似文献   

18.
A lactate dehydrogenase inhibitor protein is isolated from rabbit skeletal muscle crude mitochondrial fraction. The molecular weight of the inhibitor is approximately 20,000 as determined by size exclusion HPLC. The inhibitor isoelectricpH is 5.3 as determined by agarose or polyacrylamide gel isoelectric focusing. The amino acid composition of the inhibitor is given. The presence of the inhibitor gives an acidic characteristic to the alkaline M4 lactate dehydrogenase isozyme and the lactate dehydrogenase-inhibitor complex is more stable than the enzyme alone.  相似文献   

19.
An endogenous inhibitor of calcium-activated neutral protease was purified to homogeneity from rabbit skeletal muscle using ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex A-50 columns, chromatofocusing, and hydrophobic interaction chromatography on a phenyl-Sepharose CL-4B column. The purified inhibitor was shown to be a dimer of identical subunits and each subunit has a molecular weight of about 34,000. This inhibitor was remarkably thermo- and acid-stable. It was specific for calcium-activated neutral protease and had no effect on any other protease examined (trypsin, papain, alpha-chymotrypsin, bromelain, etc.). It is demonstrated that the inhibition is due to the formation of stoichiometric complex between two enzyme molecules and one inhibitor molecule.  相似文献   

20.
An endogenous inhibitor of neutral Ca2+-dependent proteinases has been isolated from rabbit liver cytosol. The inhibitor is a heat-stable, 240-kDa, tetrameric protein. It is dissociated into its 60-kDa subunits by high concentrations of Ca2+ (0.1-1 mM), but not by lower concentrations in the physiological range. Inhibition of the 150-kDa proteinase of rabbit liver [Melloni, E., Pontremoli, S., Salamino, F., Sparatore, B., Michetti, M. and Horecker, B.L. (1984) Arch. Biochem. Biophys. 232, 505-512] requires the monomeric form of the inhibitor, and occurs only at the high concentrations of Ca2+ which also cause dissociation of the dimeric 150-kDa proteinase into its 80-kDa subunits. The molecular weight of the inactive proteinase-inhibitor complex was estimated by the equilibrium gel penetration method to be 140 kDa, suggesting that it contains one subunit of proteinase and one of inhibitor. The mechanism of interaction of the inhibitor with the 200-kDa proteinase at high concentrations of Ca2+ is identical to that observed for the 150-kDa proteinase, namely dissociation of both proteinase and inhibitor into subunits and formation of an inactive 160-kDa proteinase-inhibitor complex. However, unlike the 150-kDa proteinase, which does not interact with the inhibitor at low Ca2+ concentrations, the 200-kDa proteinase is also inhibited at low concentrations of Ca2+. Under these conditions, the high-molecular-weight complex (greater than 400 kDa) formed between the tetrameric inhibitor and the dimeric proteinase prevents conversion of the 200-kDa proenzyme to the active, low-Ca2+-requiring form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号