首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

2.
Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.  相似文献   

3.
In addition to its role in the uptake of apolipoprotein B (apoB)-containing lipoproteins, apoE promotes hepatic very low density lipoprotein-triglyceride (VLDL-TG) production in animal models. However, it is not known if apoE increases the amount of TG per VLDL particle or the number of VLDL particles secreted. VLDL-apoB production is a measure of the rate of VLDL particle secretion. We determined the effects of apoE deficiency and apoE overexpression on VLDL-apoB production in mice. [(35)S]methionine was injected into endogenously label VLDL-apoB and Triton WR-1339 was simultaneously injected to block the catabolism of VLDL. Compared with wild-type mice, the VLDL-apoB production rate was decreased by 33% in apoE-deficient mice. Conversely, VLDL-apoB production was increased by 48% in mice overexpressing apoE compared with controls. Nascent VLDL, obtained from post-Triton plasma, had a decreased, not increased, content of TG per apoB in the apoE-overexpressing group compared with the control group. This study demonstrates that hepatic apoE expression increases the output of VLDL triglyceride by increasing the production rate of VLDL-apoB, suggesting that hepatic apoE influences the number of VLDL particles secreted by the liver.  相似文献   

4.
A method has been described for the measurement of apoB concentration and specific activity in very low density lipoprotein (VLDL) and low density lipoprotein (LDL) during metabolic studies. For measurement of specific activity, apoB was separated from other apolipoproteins and lipids by precipitation in, and subsequent washing with, isopropanol. For determination of apoB concentration, equal volumes of lipoprotein and isopropanol were mixed, and the protein content of the apoB precipitate was measured by the difference between total lipoprotein protein and the protein measured in the supernatant. Evidence that there was no apoB solubilization in isopropanol and that precipitated apoB was virtually free of soluble apolipoproteins was obtained by electrophoresis. Lipid contamination of the apoB precipitate was less than 1%. The methods were applicable to VLDL, intermediate density lipoprotein (IDL), and LDL from normolipemic patients with protein concentrations between 187 micrograms/ml and 1898 micrograms/ml. The data obtained using isopropanol were highly correlated with those using tetramethylurea, and recoveries of apoB were similar. Furthermore, the isopropanol method has been demonstrated to yield consistent data for apoB specific activities in a study of VLDL, IDL, and LDL metabolism.  相似文献   

5.
Apolipoprotein (apo) E stimulates the secretion of very low density lipoproteins (VLDLs) by an as yet unknown mechanism. Recently, a working mechanism for apoE was proposed (Twisk, J., Gillian-Daniel, D. L., Tebon, A., Wang, L., Barrett, P. H., and Attie, A. D. (2000) J. Clin. Invest. 105, 521-532) in which apoE prevents the inhibitory action of the low density lipoprotein receptor (LDLr) by binding to it. We have first tested whether this newly described effect of the LDLr on VLDL secretion, obtained in vitro, is also observed in vivo. In LDLr knockout mice (LDLr-/-), the production of VLDL triglycerides and apoB was 30% higher than that in controls. Also the ratio of apoB100:apoB48 secretion was increased in the LDLr-/- mice. The composition of nascent VLDL was similar in both strains. To test whether the action of apoE depends on the presence of the LDLr, VLDL production was measured in LDLr-/- and apoE-/- LDLr-/- mice. Deletion of apoE on a LDLr-/- background still caused a 50% decrease of VLDL triglycerides and apoB production. The composition of nascent VLDL was again similar for both strains. We conclude that the effect of apoE on hepatic VLDL production is independent of the presence of the LDLr.  相似文献   

6.
7.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

8.
9.
Mutations in apolipoprotein B (APOB) may reduce binding of low density lipoprotein (LDL) to the LDL receptor and cause hypercholesterolemia. We showed that heterozygotes for a new mutation in APOB have hypobetalipoproteinemia, despite a reduced binding of LDL to the LDL receptor. APOB R3480P heterozygotes were identified among 9,255 individuals from the general population and had reduced levels of apoB-containing lipoproteins. Most surprisingly, R3480P LDL bound with lower affinity to the LDL receptor than non-carrier LDL in vitro, and these results were confirmed by turnover studies of LDL in vivo. In very low density lipoprotein (VLDL) turnover studies, the amount of VLDL converted to LDL in R3480P heterozygotes was substantially reduced, suggesting that this was the explanation for the hypobetalipoproteinemia observed in these individuals. Our findings emphasized the importance of combining in vitro studies with both human in vivo and population-based studies, as in vitro studies often have focused on very limited aspects of complex mechanisms taken out of their natural context.  相似文献   

10.
Abnormal low density lipoprotein metabolism in apolipoprotein E deficiency   总被引:2,自引:0,他引:2  
Apolipoprotein(apo) E deficiency is an inherited disease characterized by type III hyperlipoproteinemia and less than 1% normal plasma apoE concentration. The role of apoE in LDL metabolism was investigated by quantitating the metabolism of radiolabeled normal and apoE-deficient LDL in both normal and apoE-deficient subjects. ApoE deficiency resulted in an accumulation of plasma IDL, and a decreased synthesis of LDL consistent with a block in the conversion of IDL to LDL. The LDL isolated from the apoE-deficient patient was similar to normal LDL in hydrated density, size, and composition. However, the apoE-deficient LDL was kinetically abnormal with delayed catabolism in both normal subjects and the apoE-deficient patient. In addition, the catabolism of normal LDL in the apoE-deficient subject was increased. These results were interpreted as indicating that apoE is necessary for the conversion of IDL to LDL and the formation of kinetically normal LDL. The rapid catabolism of normal LDL in the apoE-deficient patient suggests an up-regulation of the hepatic LDL receptor pathway. Based on these results, apoE is proposed to play an important role in the conversion of IDL to LDL, the formation of kinetically normal LDL, and the regulation of LDL receptor function.  相似文献   

11.
We examined the role of S-linked palmitoylation of human apolipoprotein (apo) B in the assembly and secretion of very low density lipoproteins using recombinant human apoB48. There are four free cysteine residues (Cys(1085), Cys(1396), Cys(1478), and Cys(1635)) within apoB48 that potentially can be palmitoylated. All four cysteine residues were substituted with serine by site-specific mutagenesis. The mutant protein was expressed in transfected rat hepatoma McA-RH7777 cells. Metabolic labeling of the stably transfected cells with iodopalmitic acid analog showed that the mutant apoB48 lacked palmitoylation. The lack of palmitoylation had little impact on the ability of apoB48 to assemble and secrete very low density lipoproteins or high density lipoproteins. Immunocytochemistry experiments using confocal microscopy failed to reveal any major alterations in the intracellular distribution of the mutant apoB48 at steady state. Pulse-chase analysis combined with subcellular fractionation showed no apparent deficiency in the movement of the mutant apoB48 protein from the endoplasmic reticulum to cis/medial Golgi. However, the mutant apoB48 lacking palmitoylation showed retarded movement toward the distal Golgi and increased association (>2-fold) with the membranes of the secretory compartments. A marginal decrease (by 15-20%) in secretion efficiency as compared with that of wild type apoB48 was also observed. These results suggest that lack of palmitoylation may influence the partitioning of apoB48 between microsomal membranes and microsomal lumen, but it does not compromise the ability of apoB48 to assemble lipoproteins.  相似文献   

12.
The binding of native rabbit beta-very low density lipoproteins (beta-VLDL) to the low density lipoprotein receptor-related protein (LRP) requires incubation with exogenous apolipoprotein (apo) E. Inclusion of a mixture of the C apolipoproteins in the incubation inhibits this binding. In the present study, the ability of the individual C apolipoproteins (C-I, C-II, and C-III) to block binding of beta-VLDL to the LRP was examined by measuring cholesteryl ester formation in mutant fibroblasts that lack low density lipoprotein receptors or by measuring binding to the LRP using ligand blotting. In each assay, both apoC-I and apoC-II inhibited binding; apoC-I was the more effective inhibitor. Apolipoprotein C-III had no effect on binding activity, regardless of its sialylation level. Binding of human apoE to rabbit beta-VLDL in the absence or presence of human apoC-I, apoC-II, and monosialo-apoC-III was also determined, by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results of these studies are consistent with a mechanism in which exogenous human apoE displaces the endogenous apoE and the beta-VLDL particle becomes enriched with apoE (by 4.2-fold in this study). At this higher apoE content, the beta-VLDL bound to the LRP. Inclusion of apoC-I, apoC-II, or apoC-III in the incubation mixture resulted in a differential displacement of apoE from the beta-VLDL; however, at the concentrations examined, only apoC-I and apoC-II were capable of displacing sufficient apoE to abolish binding to LRP.  相似文献   

13.
Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.  相似文献   

14.
The major protein component in secreted very low density lipoproteins (VLDL) is apoB, and it is established that these particles can reach sizes approaching 100 nm. We previously employed a cell-free system to investigate the nature of the vesicles in which this large cargo exits the endoplasmic reticulum (ER) (Gusarova, V., Brodsky, J. L., and Fisher, E. A. (2003) J. Biol. Chem. 278, 48051-48058). We found that apoB-containing lipoproteins exit the ER as dense lipid-protein complexes regardless of the final sizes of the particles and that further expansion occurs via post-ER lipidation. Here, we focused on maturation in the Golgi apparatus. In three separate approaches, we found that VLDL maturation (as assessed by changes in buoyant density) was associated with conformational changes in apoB. In addition, as the size of VLDL expanded, apoE concentrated in a subclass of Golgi microsomes or Golgi-derived vesicles that co-migrated with apoB-containing microsomes or vesicles, respectively. A relationship between apoB and apoE was further confirmed in co-localization studies by immunoelectron microscopy. These combined results are consistent with previous suggestions that apoE is required for VLDL maturation. To our surprise, however, we observed robust secretion of mature VLDL when apoE synthesis was inhibited in either rat hepatoma cells or apoE(-/-) mouse primary hepatocytes. We conclude that VLDL maturation in the Golgi involves apoB conformational changes and that the expansion of the lipoprotein does not require apoE; rather, the increase in VLDL surface area favors apoE binding.  相似文献   

15.

Introduction

Gout results from an innate immune response to monosodium urate (MSU) crystals deposited in joints. Increased very low-density lipoprotein (VLDL) has been associated with gout. The apolipoprotein B (apo B), which is present on VLDL, regulates neutrophil response to MSU crystals and has been positively associated with gout. Furthermore, the gene (A1CF) encoding the complementation factor for the APOB mRNA-editing enzyme is associated with urate levels. However, the relationship of apo B and VLDL with gout and hyperuricaemia (HU) is still unclear. Therefore, we tested the association of VLDL and apo B with HU and with gout compared to HU.

Methods

New Zealand European (n = 90) and Māori and Pacific Island (Polynesian) (n = 90) male gout case and control sample sets were divided into normouricaemia (NU), asymptomatic HU and gout groups. Size exclusion chromatography and enzyme-linked immunosorbant assay was used to measure VLDL and apo B. Multivariate logistic regression was used to assess the risk of gout and HU per unit change in VLDL and apo B.

Results

Increased levels of VLDL triglycerides (Tg) were observed in the gout sample set compared to NU and HU in Europeans (P = 1.8 × 10-6 and 1 × 10-3, respectively), but only compared to NU in Polynesians (P = 0.023). This increase was driven by increased number of VLDL particles in the European participants and by the Tg-enrichment of existing VLDL particles in the Polynesian participants. Each mmol/L increase in VLDL Tg was significantly associated with gout in the presence of HU in Europeans, with a similar trend in Polynesians (OR = 7.61, P = 0.011 and 2.84, P = 0.069, respectively). Each μmol/L increase in total apo B trended towards decreased risk of HU (OR = 0.47; P = 0.062) and, conversely, with increased risk of gout compared to HU (OR = 5.60; P = 0.004).

Conclusions

Increased VLDL Tg is associated with the risk of gout compared to HU. A genetic approach should be taken to investigate the possibility for causality of VLDL in gout. Apolipoprotein B may have pleiotropic effects in determining HU and gout.  相似文献   

16.
We previously identified a defect in the in vivo catabolism of low density lipoprotein (LDL) from hypercholesterolemic pigs carrying a mutant apolipoprotein B allele. In the present studies, we examined the in vitro metabolism of mutant LDL in cultured pig fibroblasts. A 3-fold higher concentration of mutant LDL (compared to control) was needed to displace 50% of control 125I-LDL binding. Mutant LDL had a 6-fold higher dissociation constant than control LDL. Scatchard plots of the binding data were concave upward, suggesting multiple classes of binding sites or negative cooperativity. The mutant LDL degradation rate was reduced by 40%; this decrease could be attributed to a dense LDL subspecies. Mutant and control buoyant LDL subspecies were degraded more slowly than the corresponding dense LDL subspecies. Together, these studies show that diminished LDL receptor binding can result from mutations in apolipoprotein B and from changes in the lipid composition of LDL particles.  相似文献   

17.
Hepatocytes obtained from rats fed a choline-deficient diet for 3 days were cultured in a medium +/- choline (100 microM) or methionine (200 microM). We investigated how choline deficiency affected hepatic lipogenesis, apolipoprotein synthesis, and lipoprotein secretion. The mass of triacylglycerol and phosphatidylcholine secreted was increased about 3-fold and 2-fold, respectively, by the addition of either choline or methionine to the cultured cells. Similarly, a 3-fold stimulation in the secretion of [3H]triacylglycerol and [3H]phosphatidylcholine derived from [3H]oleate was observed after the addition of choline or methionine. Fractionation of secreted lipoproteins by ultracentrifugation revealed that the reduced secretion of triacylglycerol and phosphatidylcholine from choline-deficient cells was mainly due to impaired secretion of very low density lipoproteins (VLDL) (but not high density lipoproteins (HDL)). Fluorography of L-[4,5-3H]leucine-labeled lipoproteins showed a remarkable inhibition of VLDL secretion by choline deficiency. The addition of choline or methionine stimulated the synthesis of phosphatidylcholine and increased the cellular phosphatidylcholine levels to that in normal cells. While there was little effect of choline on the synthesis and amount of cellular phosphatidylethanolamine, the addition of methionine diminished cellular phosphatidylethanolamine levels. Choline deficiency did not change the rate of incorporation of L-[4,5-3H]leucine into cellular VLDL apolipoproteins, nor the rate of disappearance of radioactivity from L-[4,5-3H]leucine-labeled cellular apoB, apoE, and apoC. These results suggest that hepatic secretion of VLDL, but not HDL, requires active phosphatidylcholine biosynthesis. Secondly, the inhibitory effect of choline deficiency on VLDL secretion can be compensated by the methylation of phosphatidylethanolamine.  相似文献   

18.
The laying hen expresses two different lipoprotein transport receptors in cell-specific fashion. On the one hand, a 95-kDa oocyte membrane protein mediates the uptake of the major yolk precursors, very low density lipoprotein, and vitellogenin; on the other hand, somatic cells synthesize a 130-kDa receptor that is involved in the regulation of cellular cholesterol homeostasis (Hayashi, K., Nimpf, J., and Schneider, W. J. (1989) J. Biol. Chem. 264, 3131-3139). Here we show that the oocyte-specific receptor binds, in addition to the yolk precursor proteins, an apolipoprotein of mammalian origin, apolipoprotein E. Ligand blotting, a solid-phase binding assay, and antireceptor antibodies were employed to demonstrate that binding of vitellogenin, very low density lipoprotein (via apolipoprotein B), and apolipoprotein E occurs to closely related, if not identical, sites on the 95-kDa oocyte receptor. The binding properties of lipovitellin, which harbors the receptor recognition site of vitellogenin, are analogous to those of apolipoprotein E: both require association with lipid for expression of functional receptor binding. The ligand specificity of the avian oocyte lipoprotein receptor supports the hypothesis that vitellogenin, which has evolved in oviparous species, represents a counterpart to mammalian apolipoprotein E.  相似文献   

19.
The binding of low density lipoprotein (LDL) to fibroblasts occurs through apolipoprotein B, a glycoprotein. The role of the carbohydrate in binding was assessed in two ways:
  • 1.(1) LDL, freed of sialic acid and most of the glucosamine and hexoses by digestion with a mixture of glycosidases, bound to fibroblasts as does native LDL.
  • 2.(2) The glycopeptides liberated from apoprotein B by trypsin and pronase failed to inhibit LDL binding to fibroblasts. Apparently the carbohydrate moiety of LDL does not interact with the plasma membrane receptor.
  相似文献   

20.
Apolipoprotein E (apoE) serves as a ligand for the low density lipoprotein receptor (LDLR) only when bound to lipid. The N-terminal domain of lipid-free apoE exists as globular 4-helix bundle that is conferred with LDLR recognition ability after undergoing a lipid binding-induced conformational change. To investigate the structural basis for this phenomenon, site-directed spin label electron paramagnetic resonance spectroscopy experiments were conducted, focusing on the region near the C-terminal end of helix 4 (Ala-164). Using C112S apoE-N-terminal as template, a series of single cysteine substitution variants (at sequence positions 161, 165, 169, 173, 176, and 181) were produced, isolated, and labeled with the nitroxide probe, methane thiosulfonate. Electron paramagnetic resonance analysis revealed that lipid association induced fixed secondary structure in a region of the molecule known to exist as random coil in the lipid-free state. In a complementary approach, site-directed fluorescence analysis using an environmentally sensitive probe indicated that the lipid-induced transition of this region of the protein to alpha helix was accompanied by relocation to a more hydrophobic environment. In studies with full-length apoE single Cys variants, a similar random coil to stable backbone transition was observed, consistent with the concept that lipid interaction induced an extension of helix 4 beyond the boundary defining its lipid-free conformation. This structural transition likely represents a key conformational change necessary for manifestation of the LDLR recognition properties of apoE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号