共查询到20条相似文献,搜索用时 0 毫秒
1.
Malbec O Schmitt C Bruhns P Krystal G Fridman WH Daëron M 《The Journal of biological chemistry》2001,276(32):30381-30391
We previously found that low affinity receptors for the Fc portion of IgG, FcgammaRIIB, which are widely expressed by hematopoietic cells, can negatively regulate receptor tyrosine kinase-dependent cell proliferation. We investigated here the mechanisms of this inhibition. We used as experimental models wild-type mast cells, which constitutively express the stem cell factor receptor Kit and FcgammaRIIB, FcgammaRIIB-deficient mast cells reconstituted with wild-type or mutated FcgammaRIIB, and Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1)-deficient mast cells. We found that, upon coaggregation with Kit, FcgammaRIIB are tyrosyl-phosphorylated, recruit SHIP1, but not SHIP2, SH2 domain-containing protein tyrosine phosphatase-1 or -2, abrogate Akt phosphorylation, shorten the duration of the activation of mitogen-activated protein kinases of the Ras and Rac pathways, abrogate cyclin induction, prevent cells from entering the cell cycle, and block thymidine incorporation. FcgammaRIIB-mediated inhibition of Kit-dependent cell proliferation was reduced in SHIP1-deficient mast cells, whereas inhibition of IgE-induced responses was abrogated. Cell proliferation was, however, inhibited by coaggregating Kit with FcgammaRIIB whose intracytoplasmic domain was replaced with the catalytic domain of SHIP1. These results demonstrate that FcgammaRIIB use SHIP1 to inhibit pathways shared by receptor tyrosine kinases and immunoreceptors to trigger cell proliferation and cell activation, respectively, but that, in the absence of SHIP1, FcgammaRIIB can use other effectors that specifically inhibit cell proliferation. 相似文献
2.
Alaa Droubi Connor Wallis Karen E. Anderson Saifur Rahman Aloka de Sa Taufiq Rahman Len R. Stephens Philip T. Hawkins Martin Lowe 《The Journal of cell biology》2022,221(9)
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling. 相似文献
3.
Saint-Dic D Chang SC Taylor GS Provot MM Ross TS 《The Journal of biological chemistry》2001,276(24):21192-21198
It has been shown previously that the Huntingtin interacting protein 1 gene (HIP1) was fused to the platelet-derived growth factor beta receptor gene (PDGFbetaR) in leukemic cells of a patient with chronic myelomonocytic leukemia. This resulted in the expression of the chimeric HIP1/PDGFbetaR protein, which oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the Ba/F3 murine hematopoietic cell line to interleukin-3-independent growth. Tyrosine phosphorylation of a 130-kDa protein (p130) correlates with transformation by HIP1/PDGFbetaR and related transforming mutants. We report here that the p130 band is immunologically related to the 125-kDa isoform of the Src homology 2-containing inositol 5-phosphatase, SHIP1. We have found that SHIP1 associates and colocalizes with the HIP1/PDGFbetaR fusion protein and related transforming mutants. These mutants include a mutant that has eight Src homology 2-binding phosphotyrosines mutated to phenylalanine. In contrast, SHIP1 does not associate with H/P(KI), the kinase-dead form of HIP1/PDGFbetaR. We also report that phosphorylation of SHIP1 by HIP1/PDGFbetaR does not change its 5-phosphatase-specific activity. This suggests that phosphorylation and possible PDGFbetaR-mediated sequestration of SHIP1 from its substrates (PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4)) might alter the levels of these inositol-containing signal transduction molecules, resulting in activation of downstream effectors of cellular proliferation and/or survival. 相似文献
4.
Vaillancourt M Levasseur S Tremblay ML Marois L Rollet-Labelle E Naccache PH 《Cellular signalling》2006,18(11):2022-2032
Phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P(3)) plays important signaling roles in immune cells, particularly in the control of activating pathways and of survival. It is formed by a family of phosphatidylinositol 3'-kinases (PI3Ks) which phosphorylate PtdIns(4,5)P(2) in vivo. In human neutrophils, the levels of PtdIns(3,4,5)P(3) increase rapidly at the leading edge of locomoting cells and at the base of the phagocytic cup during FcgammaR-mediated particle ingestion. Even though these, and other, data indicate that PtdIns(3,4,5)P(3) is involved in the control of chemotaxis and phagocytosis in human neutrophils, the mechanisms that regulate its levels have yet to be fully elucidated in these cells. We evaluated the potential implication of SHIP1 and PTEN, two lipid phosphatases that utilize PtdIns(3,4,5)P(3) as substrate, in the signaling pathways called upon in response to CD32a cross-linking. We observed that the cross-linking of CD32a resulted in a transient accumulation of PtdIns(3,4,5)P(3). CD32a cross-linking also induced the tyrosine phosphorylation of SHIP1, its translocation to the plasma membrane and its co-immunoprecipitation with CD32a. CD32a cross-linking had no effect on the level of serine/threonine phosphorylation of PTEN and did not stimulate its translocation to the plasma membrane. PP2, a Src kinase inhibitor, inhibited the tyrosine phosphorylation of SHIP1 as well as its translocation to the plasma membrane. Wortmannin, a PI3K inhibitor, had no effect on either of these two indices of activation of SHIP1. Our results indicate that SHIP1 is involved, in a Src kinase-dependent manner, in the early signaling events observed upon the cross-linking of CD32a in human neutrophils. 相似文献
5.
Batty IH van der Kaay J Gray A Telfer JF Dixon MJ Downes CP 《The Biochemical journal》2007,407(2):255-266
Activation of class Ia PI3K (phosphoinositide 3-kinase) produces PtdInsP3, a vital intracellular mediator whose degradation generates additional lipid signals. In the present study vanadate analogues that inhibit PTPs (protein tyrosine phosphatases) were used to probe the mechanisms which regulate the concentrations of these molecules allowing their independent or integrated function. In 1321N1 cells, which lack PtdInsP3 3-phosphatase activity, sodium vanadate or a cell permeable derivative, bpV(phen) [potassium bisperoxo(1,10-phenanthroline)oxovanadate (V)], increased the recruitment into anti-phosphotyrosine immunoprecipitates of PI3K activity and of the p85 and p110a subunits of class Ia PI3K and enhanced the recruitment of PI3K activity stimulated by PDGF (platelet-derived growth factor). However, neither inhibitor much increased cellular PtdInsP3 concentrations, but both diminished dramatically the accumulation of PtdInsP3 stimulated by PDGF or insulin and markedly increased the control and stimulated concentrations of PtdIns(3,4)P2. These actions were accounted for by the ability of PTP inhibitors to stimulate the activity of endogenous PtdInsP3 5-phosphatase(s), particularly SHIP2 (Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2) and to inhibit types I and II PtdIns(3,4)P2 4-phosphatases. Thus bpV(phen) promoted the translocation of SHIP2 from the cytosol to a Triton X-100-insoluble fraction and induced a marked (5-10-fold) increase in SHIP2 specific activity mediated by enhanced tyrosine phosphorylation. The net effect of these inhibitors was, therefore, to switch the signal output of class I PI3K from PtdInsP3 to PtdIns(3,4)P2. A key component controlling this shift in the balance of lipid signals is the activation of SHIP2 by increased tyrosine phosphorylation, an effect observed in HeLa cells in response to both PTP inhibitors and epidermal growth factor. 相似文献
6.
Stefan M Koch A Mancini A Mohr A Weidner KM Niemann H Tamura T 《The Journal of biological chemistry》2001,276(5):3017-3023
Hepatocyte growth factor (HGF)/scatter factor is a multifunctional cytokine that induces mitogenesis, motility, and morphogenesis in epithelial, endothelial, and neuronal cells. The receptor for HGF/scatter factor was identified as c-Met tyrosine kinase, and activation of the receptor induces multiple signaling cascades. To gain further insight into c-Met-mediated multiple events at a molecular level, we isolated several signaling molecules including a novel binding partner of c-Met, SH2 domain-containing inositol 5-phosphatase 1 (SHIP-1). Western blot analysis revealed that SHIP-1 is expressed in the epithelial cell line, Madin-Darby canine kidney (MDCK) cells. SHIP-1 binds at phosphotyrosine 1356 at the multifunctional docking site. Because a number of signaling molecules such as Grb2, phosphatidylinositol 3-kinase, and Gab1 bind to the multifunctional docking site, we further performed an in vitro competition study using glutathione S-transferase- or His-tagged signaling molecules with c-Met tyrosine kinase. Our binding study revealed that SHIP-1, Grb2, and Gab1 bound preferentially over phosphatidylinositol 3-kinase. Surprisingly, MDCK cells that overexpress SHIP-1 demonstrated branching tubulogenesis within 2 days after HGF treatment, whereas wild-type MDCK cells showed tubulogenesis only after 6 days following treatment without altering cell scattering or cell growth potency. Furthermore, overexpression of a mutant SHIP-1 lacking catalytic activity impaired HGF-mediated branching tubulogenesis. 相似文献
7.
The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. 总被引:8,自引:0,他引:8 下载免费PDF全文
J M Dyson C J O'Malley J Becanovic A D Munday M C Berndt I D Coghill H H Nandurkar L M Ooms C A Mitchell 《The Journal of cell biology》2001,155(6):1065-1079
SHIP-2 is a phosphoinositidylinositol 3,4,5 trisphosphate (PtdIns[3,4,5]P3) 5-phosphatase that contains an NH2-terminal SH2 domain, a central 5-phosphatase domain, and a COOH-terminal proline-rich domain. SHIP-2 negatively regulates insulin signaling. In unstimulated cells, SHIP-2 localized in a perinuclear cytosolic distribution and at the leading edge of the cell. Endogenous and recombinant SHIP-2 localized to membrane ruffles, which were mediated by the COOH-terminal proline-rich domain. To identify proteins that bind to the SHIP-2 proline-rich domain, yeast two-hybrid screening was performed, which isolated actin-binding protein filamin C. In addition, both filamin A and B specifically interacted with SHIP-2 in this assay. SHIP-2 coimmunoprecipitated with filamin from COS-7 cells, and association between these species did not change after epidermal growth factor stimulation. SHIP-2 colocalized with filamin at Z-lines and the sarcolemma in striated muscle sections and at membrane ruffles in COS-7 cells, although the membrane ruffling response was reduced in cells overexpressing SHIP-2. SHIP-2 membrane ruffle localization was dependent on filamin binding, as SHIP-2 was expressed exclusively in the cytosol of filamin-deficient cells. Recombinant SHIP-2 regulated PtdIns(3,4,5)P3 levels and submembraneous actin at membrane ruffles after growth factor stimulation, dependent on SHIP-2 catalytic activity. Collectively these studies demonstrate that filamin-dependent SHIP-2 localization critically regulates phosphatidylinositol 3 kinase signaling to the actin cytoskeleton. 相似文献
8.
Vandenbroere I Paternotte N Dumont JE Erneux C Pirson I 《Biochemical and biophysical research communications》2003,300(2):494-500
SHIP2 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains motifs susceptible to mediate protein-protein interaction. Using yeast two-hybrid, GST-pulldown, and coimmunoprecipitation studies, we isolated the CAP cDNA as a specific partner of SHIP2 proline-rich domain and showed by GST-pulldown experiments that the interaction took place with the SH3C of CAP. The interaction was not modulated in COS-7 cells stimulated by EGF neither in CHO cells overexpressing the insulin receptor in the presence or absence of insulin stimulation. We also showed that SHIP2 was able to coimmunoprecipitate with endogenous c-Cbl protein in the absence of CAP and with the insulin receptor in CHO-IR cell extracts. The presence of SHIP2 in a complex around the insulin receptor could account for the very specific increase in insulin sensitivity of SHIP2 knock-out mice. 相似文献
9.
Inositol polyphosphate 5-phosphatase (5PTase) is a key enzyme in the phosphatidylinositol metabolic pathway, which plays critical roles in a number of cellular processes in plants. Our previous work implicated the role of 5PTase13, which encodes a WD40-containing type II 5PTase, in hormone-mediated cotyledon vein development. Here, we show that 5PTase13 is also involved in blue light responses in Arabidopsis thaliana. Compared with that in darkness, the expression of 5PTase13 was suppressed by blue light irradiation, and disruption of the gene resulted in shortened hypocotyls and expanded cotyledons. Genetic analysis showed that 5PTase13 acted independently from CRYPTOCHROME1 and CONSTITUTIVE PHOTOMORPHOGENIC1 but interacted functionally with PHOTOTROPIN1 (PHOT1). The expression level of 5PTase13 was significantly enhanced in phot1 single or phot1 phot2 double mutants under blue light, and suppression of 5PTase13 expression rescued the elongated hypocotyls in the phot1 or phot1 phot2 mutants. Further analysis showed that the blue light-induced elevation of cytosolic Ca2+ was inhibited in the phot1 mutant but enhanced in the 5pt13 mutant, suggesting that 5PTase13 antagonizes PHOT1-mediated effects on calcium signaling under blue light. 相似文献
10.
Hashimoto A Hirose K Okada H Kurosaki T Iino M 《The Journal of biological chemistry》1999,274(16):11203-11208
Src homology 2 domain-containing inositol 5'-phosphatase (SHIP) mediates inhibitory signals that attenuate intracellular Ca2+ mobilization in B cells upon B cell receptor (BCR) stimulation. To clarify the mechanisms affected by SHIP, we analyzed Ca2+ mobilization in the DT40 B cell line in which the SHIP gene was disrupted. In SHIP-deficient cells, Ca2+ transient elicited by BCR stimulation was more prolonged than that in control cells both in the presence and absence of extracellular Ca2+. Inositol 1,4, 5-trisphosphate production following BCR stimulation was enhanced in SHIP-deficient cells. In SHIP-deficient cells in comparison with the control cells, BCR stimulation in the absence of extracellular Ca2+ induced a greater degree of Ca2+ store depletion and the Ca2+ influx upon re-addition of extracellular Ca2+ was also greater. However, store-operated Ca2+ influx (SOC) elicited by thapsigargin-induced store depletion was not affected by SHIP. These results indicate that the primary target pathway of SHIP is the Ca2+ release from the stores, and that Ca2+ influx by the SOC mechanism is secondarily controlled by the level of Ca2+ in the stores without direct inhibition of SOC. In this way, SHIP may play an important role in ensuring the robust tuning of Ca2+ signaling in B cells. 相似文献
11.
Cutting edge: association of phospholipase C-gamma 2 Src homology 2 domains with BLNK is critical for B cell antigen receptor signaling. 总被引:3,自引:0,他引:3
M Ishiai H Sugawara M Kurosaki T Kurosaki 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(4):1746-1749
To explore the mechanism(s) by which phospholipase C (PLC)-gamma 2 participates in B cell Ag receptor (BCR) signaling, we have studied the function of PLC-gamma 2 mutants in B cells deficient in PLC-gamma 2. Mutation of the N-terminal Src homology 2 domain [SH2(N)] resulted in the complete loss of inositol 1,4, 5-trisphosphate generation upon BCR engagement. A possible explanation for the SH2(N) requirement was provided by findings that this mutation abrogates the association of PLC-gamma 2 with an adaptor protein BLNK. Moreover, expression of a membrane-associated form (CD16/PLC-gamma 2) with SH2(N) mutation required coligation of BCR and CD16 for inositol 1,4,5-trisphosphate generation. Together, our results suggest a central role for the SH2(N) domain in directing PLC-gamma 2 into the close proximity of BCR signaling complex by its association with BLNK, whereby PLC-gamma 2 becomes tyrosine phosphorylated and thereby activated. 相似文献
12.
Chellaiah MA Biswas RS Yuen D Alvarez UM Hruska KA 《The Journal of biological chemistry》2001,276(50):47434-47444
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function. 相似文献
13.
Phosphoinositide signaling molecules control cellular growth, proliferation and differentiation, intracellular vesicle trafficking, and cytoskeletal rearrangement. The inositol polyphosphate 5-phosphatase family remove the D-5 position phosphate from PtdIns(3,4,5)P3, PtdIns(4,5)P2 and PtdIns(3,5)P2 forming PtdIns(3,4)P2, PtdIns(4)P and PtdIns(3)P respectively. This enzyme family, comprising ten mammalian members, exhibit seemingly non-redundant functions including the regulation of synaptic vesicle recycling, hematopoietic cell function and insulin signaling. Here we highlight recently established insights into the functions of two well characterized 5-phosphatases OCRL and SHIP2, which have been the subject of extensive functional studies, and the characterization of recently identified members, SKIP and PIPP, in order to highlight the diverse and complex functions of this enzyme family. 相似文献
14.
The negative regulatory role of the Src homology 2 domain-containing inositol 5-phosphatase (SHIP) has been invoked in a variety of receptor-mediated signaling pathways. In B lymphocytes, co-clustering of antigen receptor surface immunoglobulin with FcgammaRIIb promotes the negative effects of SHIP, but how SHIP activity is regulated is unknown. To explore this issue, we investigated the effect of SHIP phosphorylation, receptor tyrosine engagement by its Src homology 2 domain, and membrane recruitment of SHIP on its enzymatic activity. We examined two SHIP phosphorylation kinase candidates, Lyn and Syk, and observed that the Src protein-tyrosine kinase, Lyn is far superior to Syk in its ability to phosphorylate SHIP both in vitro and in vivo. However, we found a minimal effect of phosphorylation or receptor tyrosine engagement of SHIP on its enzymatic activity, whereas membrane localization of SHIP significantly reduced cellular phosphatidylinositol 3,4, 5-triphosphate levels. Based on our results, we propose that a membrane localization of SHIP is the crucial event in the induction of its phosphatase effects. 相似文献
15.
Zhu C Sato M Yanagisawa T Fujimoto M Adachi T Tsubata T 《The Journal of biological chemistry》2008,283(3):1653-1659
CD22, a B lymphocyte membrane glycoprotein, contains immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic region and recruits Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) to the phosphorylated ITIMs upon ligation of B lymphocyte antigen receptor (BCR), thereby negatively regulating BCR signaling. Among the three previously identified ITIMs, both ITIMs containing tyrosine residues at position 843 (Tyr(843)) and 863 (Tyr(863)), respectively, are shown to be required for CD22 to recruit SHP-1 and regulate BCR signaling upon BCR ligation by anti-Ig antibody (Ab), indicating that CD22 has the SHP-1-binding domain at the region containing Tyr(843) and Tyr(863). Here we address the requirement of CD22 for SHP-1 recruitment and BCR regulation upon BCR ligation by antigen, which induces much stronger CD22 phosphorylation than anti-Ig Ab does. We demonstrate that the CD22 mutant in which both Tyr(843) and Tyr(863) are replaced by phenylalanine (CD22F5/6) recruits SHP-1 and regulates BCR signaling upon stimulation with antigen but not anti-Ig Ab. This result strongly suggests that CD22 contains another SHP-1 binding domain that is specifically activated upon stimulation with antigen. Both of the flanking sequences of Tyr(783) and Tyr(817) fit the consensus sequence of ITIM, and the CD22F5/6 mutant requires these tyrosine residues for SHP-1 binding and BCR regulation. Thus, these ITIMs constitute a novel conditional SHP-1-binding site of CD22 that is activated upon BCR ligation by antigen but not by anti-Ig Ab. 相似文献
16.
Marina V Kisseleva Li Cao Philip W Majerus 《The Journal of biological chemistry》2002,277(8):6266-6272
Phosphoinositide-specific inositol polyphosphate 5- phosphatase IV has the affinity for PI(3,4,5)P(3) (K(m) = 0.65 microM) that is approximately 10-fold greater than the other inositol polyphosphate 5-phosphatases, which use this substrate including SHIP, OCRL, and 5ptase II, suggesting that it may be important in controlling intracellular levels of this metabolite. We created cell lines stably expressing the enzyme to study its effect on cell function. We found that overexpression of 5ptase IV in 293 cells caused the rapid depletion of both PI(4,5)P(2) and PI(3,4,5)P(3) in cells with corresponding increases in the products, PI(4)P and PI(3,4)P(2), changing the balance of two phosphoinositol products of phosphoinositide 3-kinase, PI(3,4)P(2) and PI(3,4,5)P(3), in the cell. One of the targets of these phosphoinositides is the serine/threonine kinase Akt, which plays an important role in the control of apoptosis. We were able to address the relative roles of PI(3,4)P(2) and PI(3,4,5)P(3) in the activation of Akt by selective depletion of these phosphoinositides in cells stably transfected with 5ptase IV and inositol polyphosphate 4-phosphatase (4ptase I). In cells transfected with 4ptase I, the level of PI(3,4)P(2) was reduced, and PI(3,4,5)P(3) was increased. Expression of the two enzymes had the opposite effect on the phosphorylation of Akt in response to stimulation with growth factors or heat shock. Akt phosphorylation was inhibited in cells expressing 5ptase IV but increased in 4ptase I cells and correlated with the intracellular level of PI(3,4,5)P(3) and not that of PI(3,4)P(2). The inhibition of Akt phosphorylation in cells expressing 5ptase IV makes them highly susceptible to FAS-induced apoptosis, whereas overexpressing of the 4ptase I protects cells from apoptosis. Our results place 5ptase IV as a relevant biological regulator of PI3K/Akt pathway in cells. 相似文献
17.
Ishihara H Sasaoka T Ishiki M Wada T Hori H Kagawa S Kobayashi M 《Molecular endocrinology (Baltimore, Md.)》2002,16(10):2371-2381
Lipid phosphatase SHIP2 [Src homology 2 (SH2)-containing inositol 5'-phosphatase 2] has been shown to be a physiologically critical negative regulator of insulin signaling. We investigated the molecular mechanism by which SHIP2 negatively regulates insulin-induced phosphorylation of Akt, a key downstream molecule of phosphatidylinositol 3-kinase important for the biological action of insulin. Overexpression of wild-type SHIP2 (WT-SHIP2) inhibited insulin-induced phosphorylation of Akt at both Thr(308) and Ser(473) in Rat1 fibroblasts expressing insulin receptors. The degree of inhibition was less in the cells expressing either a mutant SHIP2 with R47Q change (R/Q-SHIP2) in the SH2 domain, or a mutant SHIP2 with Y987F change (Y/F-SHIP2) in the C-terminal tyrosine phosphorylation site. However, on addition of a myristoylation signal, WT-SHIP2, R/Q-SHIP2, and Y/F-SHIP2 all efficiently inhibited insulin-induced Akt phosphorylation at both residues, whereas a 5'-phosphatase-defective mutant SHIP2 (deltaIP-SHIP2) with the myristoylation signal did not. Interestingly, the degree of inhibition of Akt phosphorylation by R/Q-SHIP2 and Y/F-SHIP2 is well correlated with the extent of their association with Shc. In addition, overexpression of WT-Shc increased the insulin-induced association of SHIP2 with Shc, whereas a decrease in the amount of Shc on expression of antisense Shc mRNA led to a reduction in the SHIP2-Shc association. Furthermore, the inhibitory effect on insulin-induced Akt phosphorylation by WT-SHIP2 was decreased in antisense-Shc cells. These results indicate that the membrane localization of SHIP2 with its 5'-phosphatase activity is required for negative regulation of insulin-induced Akt phosphorylation and that the localization is regulated, at least in part, by the association of SHIP2 with Shc in Rat1 fibroblasts. 相似文献
18.
Kashiwada M Cattoretti G McKeag L Rouse T Showalter BM Al-Alem U Niki M Pandolfi PP Field EH Rothman PB 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(7):3958-3965
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-beta, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4(+)CD25(-) T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development. 相似文献
19.
20.
Chi Y Zhou B Wang WQ Chung SK Kwon YU Ahn YH Chang YT Tsujishita Y Hurley JH Zhang ZY 《The Journal of biological chemistry》2004,279(43):44987-44995
Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) approximately Ins(4,5)P2 approximately Ins(1,4,5)P3 approximately Ins(4,5,6)P3 > PtdIns(3,5)P2 approximately PtdIns(3,4,5)P3 approximately Ins(1,2,4,5)P4 approximately Ins(1,3,4,5)P4 approximately Ins-(2,4,5,6)P4 approximately Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 approximately PtdIns(3,5)P2 approximately Ins(1,4,5,6)P4 approximately Ins(2,4,5,6)P4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation. 相似文献