首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新型功能性纳米材料在设计和制备技术方面的进步为纳米医学的发展提供了很大的机遇。在过去十年中,介孔碳纳米材料在制备和应用方面获得了巨大的进步。作为一种新型无机材料体系,介孔碳纳米材料结合了介孔的结构以及碳质组成的特点,显示出不同于传统介孔二氧化硅以及其它一些碳基材料体系(碳纳米管、石墨烯、富勒烯等)的优越特性。介孔碳纳米材料在药物的吸附与控释、光热治疗、协同治疗、肿瘤细胞的荧光标记、催化、生物传感、生物大分子的分离等诸多领域表现出其他多孔材料难以达到的优越性和应用潜力。本文对介孔碳纳米材料的制备和修饰技术进行介绍,重点关注介孔碳纳米颗粒在药物负载和光热控释方面的应用,最后对介孔碳纳米材料在生物医学领域的应用前景和所面临的关键问题进行讨论。  相似文献   

2.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

3.
Drug delivery into the brain was difficult due to the existence of blood brain barrier, which only permits some molecules to pass through freely. In past decades, nanotechnology has enabled many technical advances including drug delivery into the brain with high efficiency and accuracy. In the present paper, we summarize recent important advances in employing nanotechnology for drug delivery to the brain as well as controlled drug release.  相似文献   

4.
壳聚糖是一种由甲壳素脱乙酰化得到的氨基多糖,具有生物相容性、低细胞毒性和可生物降解性等特点。壳聚糖/β-甘油磷酸钠溶液温敏水凝胶在组织工程、药物缓释等领域多有报道,其成胶性能取决于凝胶的组分和浓度。针对单纯壳聚糖水凝胶强度较低、降解较快、药物突释等缺陷,通常对壳聚糖进行改性或引入新材料共混,获得更符合实际需要的壳聚糖基温敏水凝胶。对近年来壳聚糖基水凝胶的研究进展进行综述,包括改性壳聚糖、共混体系等,概述了其在组织工程(软骨、血管、神经修复)、药物缓释(癌症药物缓释、糖尿病治疗)领域中研究和应用的新进展,以期为后续温敏水凝胶的进一步研究提供参考。  相似文献   

5.
Abstract

Nanomedicine as a field has emerged from the early success of nanoparticle-based drug delivery systems, in particular for treatment of cancer, and the advances made in nano- and biotechnology over the past decade. A prerequisite for nanoparticle-based drug delivery systems to be effective is that the drug payload is released at the target site. A large number of drug release strategies have been proposed that can be classified into certain areas. The simplest and most successful strategy so far, probably due to relative simplicity, is based on utilizing certain physico-chemical characteristics of drugs to obtain a slow drug leakage from the formulations after accumulation in the cancerous site. However, this strategy is only applicable to a relatively small range of drugs and cannot be applied to biologicals. Many advanced drug release strategies have therefore been investigated. Such strategies include utilization of heat, light and ultrasound sensitive systems and in particular pH sensitive systems where the lower pH in endosomes induces drug release. Highly interesting are enzyme sensitive systems where over-expressed disease-associated enzymes are utilized to trigger drug release. The enzyme-based strategies are particularly interesting as they require no prior knowledge of the tumour localization. The basis of this review is an evaluation of the current status of drug delivery strategies focused on triggered drug release by disease-associated enzymes. We limit ourselves to reviewing the liposome field, but the concepts and conclusions are equally important for polymer-based systems.  相似文献   

6.
Nanomaterials based on chitosan have emerged as promising carriers of therapeutic agents for drug delivery due to good biocompatibility, biodegradability, and low toxicity. Chitosan originated nanocarriers have been prepared by mini-emulsion, chemical or ionic gelation, coacervation/precipitation, and spray-drying methods. As alternatives to these traditional fabrication methods, self-assembled chitosan nanomaterials show significant advantages and have received growing scientific attention in recent years. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing or modification steps. In this review, we focus on recent progress in the design, fabrication and physicochemical aspects of chitosan-based self-assembled nanomaterials. Their applications in drug delivery of different therapeutic agents are also discussed in details.  相似文献   

7.
The recent developments in the isolation, culturing, and cryopreservation of human hepatocytes, and the application of the cells in drug development are reviewed. Recent advances include the improvement of cryopreservation procedures to allow cell attachment, thereby extending the use of the cells to assays that requires prolong culturing such as enzyme induction studies. Applications of human hepatocytes in drug development include the evaluation of metabolic stability, metabolite profiling and identification, drug-drug interaction potential, and hepatotoxic potential. The use of intact human hepatocytes, because of the complete, undisrupted metabolic pathways and cofactors, allows the development of data more relevant to humans in vivo than tissue fractions such as human liver microsomes. Incorporation of key in vivo factors with the intact hepatocytes in vitro may help predictive human in vivo drug properties. For instance, evaluation of drug metabolism and drug-drug interactions with intact human hepatocytes in 100% human serum may eliminate the need to determine in vivo intracellular concentrations for the extrapolation of in vitro data to in vivo. Co-culturing of hepatocytes and nonhepatic primary cells from other organs in the integrated discrete multiple organ co-culture (IdMOC) may allow the evaluation of multiple organ interactions in drug metabolism and drug toxicity. In conclusion, human hepatocytes represent a critical experimental model for drug development, allowing early evaluation of human drug properties to guide the design and selection of drug candidates with a high probability of clinical success.  相似文献   

8.
Despite being a relatively new addition to the Omics' landscape, lipidomics is increasingly being recognized as an important tool for the identification of druggable targets and biochemical markers. In this review we present recent advances of lipid analysis in drug discovery and development. We cover current state of the art technologies which are constantly evolving to meet demands in terms of sensitivity and selectivity. A careful selection of important examples is then provided, illustrating the versatility of lipidomics analysis in the drug discovery and development process. Integration of lipidomics with other omics’, stem-cell technologies, and metabolic flux analysis will open new avenues for deciphering pathophysiological mechanisms and the discovery of novel targets and biomarkers.  相似文献   

9.
In the scientific field, nanotechnology has offered multipurpose and designated functional nanoparticles (NPs) for the development of applications in nano-medicine. This present review focuses on cutting edge of nanotechnology in biomedical applications as drug carries in cancer treatment. The nanotechnology overcomes several limitations of drug delivery systems used in distinct therapeutic approaches of cancer treatment. The serious effect of conventional chemotherapeutics by nonspecific targeting, the lack of solubility, and the inability of chemotherapeutics entry to cancer cells which, offers a great opportunity for nanotechnology to play significant roles in cancer biology. The selective delivery of nano-drugs to the targeted cancer cells by the programmed way and avoiding nonspecific interactions to the healthy cells. The present review focuses on the methods of improving the size, shape and characteristics of nanomaterials which can be exploited for cancer therapy. The successful designing of nanocarriers can be tailored for cancer treatment for upcoming future as nano-medicines.  相似文献   

10.
Anticancer drug discovery and development using conventional cell line and animal models has traditionally had a low overall success rate. Despite yielding game-changing new therapeutics, 10–20 new molecules have to be brought to the clinic to obtain one new approval, making this approach costly and inefficient. The use of in vitro experimental models based on primary human tumour tissues has the potential to provide a representation of human cancer biology that is closer to an actual patient and to ‘bridge the translational gap’ between preclinical and clinical research. Here, we review recent advances in the use of human tumour samples for preclinical research through organoid development or as primary patient materials. While challenges still remain regarding analysis, validation and scalability, evidence is mounting for the applicability of both models as preclinical research tools.  相似文献   

11.
Liposome, a kind of nanoscale vesicle, is applied in the drug delivery systems (DDS) extensively because of its low toxicity, biodegradability and biocompatibility. However, defects of liposome drugs, such as low rates of drug release, insufficiency in active targeting and inefficient bioavailability still remain to be solved. Therefore, stimuli-responsive liposomes are brought to DDS to improve the efficacy of controlled drug release, assure specific release in targeted sites and alleviate side-effects as much as possible. Stimuli-responsive liposomes could maintain stability in circulation, tissues and cells under physiological conditions. Once delivered, they could be activated by relevant internal or external stimuli to release cargos accurately in target areas. This review highlights the design, functional principles and recent advances on application of pH-sensitive liposomes and thermosensitive liposomes respectively, which are two typical stimuli-responsive liposomes. Common targeting modifications of liposomes are discussed as well. We also summarize recent challenges of stimuli-responsive liposomes and their further applications.  相似文献   

12.
石墨烯是一种新型的二维碳纳米材料,由于具有优异的电子、光学、机械等特性,已经被广泛应用于电子器件、复合材料、能源储存等领域.近年来,石墨烯在生物医药领域崭露头角,其在诸如生物传感器、细胞成像、药物输运、抗菌材料等方面的广泛应用,为生物医药技术带来了突破,也为人体健康带来了福音.然而,随着石墨烯以不同途径进入人们的生活,其对人体及其他生物体的安全构成潜在威胁,引发的健康风险正受到广泛关注.本文从石墨烯对生物体的影响及其同生物体的相互作用方面入手,综述了近年来石墨烯健康风险的研究进展,并且总结归纳了人体抵御石墨烯健康风险的途径及机制,最后指出了未来石墨烯健康风险方面的研究方向.  相似文献   

13.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

14.
The use of nanoparticles in stem cell research is relatively recent, although very significant in the last 5 years with the publication of about 400 papers. The recent advances in the preparation of some nanomaterials, growing awareness of material science and tissue engineering researchers regarding the potential of stem cells for regenerative medicine, and advances in stem cell biology have contributed towards the boost of this research field in the last few years. Most of the research has been focused in the development of new nanoparticles for stem cell imaging; however, these nanoparticles have several potential applications such as intracellular drug carriers to control stem cell differentiation and biosensors to monitor in real time the intracellular levels of relevant biomolecules/enzymes. This review examines recent advances in the use of nanoparticles for stem cell tracking, differentiation and biosensing. We further discuss their utility and the potential concerns regarding their cytotoxicity. J. Cell. Biochem. 108: 746–752, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
药物靶标的发现和验证是新药研发的关键环节,对新药创制具有源头创新意义。天然产物是新药创制的重要来源,识别其作用靶点不仅为临床预防治疗提供可能新策略,也为进一步阐释中草药及其复方的作用特点及分子机制提供参考依据。随着生命科学和信息学的发展,药物靶点的识别及确证方法不断涌现,生物信息学、网络药理学、蛋白质组学、亲和色谱、药物亲和稳定性、芯片技术、基因敲除技术、RNA干扰等技术的广泛应用,越来越多的天然活性成分的靶点得以识别和验证。因此,本文对近五年来天然活性成分作用靶点识别及确证方法做一简要综述,以供参考。  相似文献   

16.
Natural polysaccharides such as κ-carrageenan are an important class of biomaterials for drug delivery. The incorporation of magnetic nanoparticles in polysaccharide hydrogels is currently being explored as a strategy to confer to the hydrogels novel functionalities valuable for specific bio-applications. Within this context, κ-carrageenan magnetic hydrogel nanocomposites have been prepared and the effect of magnetic (Fe3O4) nanofillers in the swelling of the hydrogels and in the release kinetics and mechanism of a model drug (methylene blue) has been investigated. In vitro release studies demonstrated the applicability of the composites in sustained drug release. The mechanism controlling the release seems to be determined by the strength of the gel network and the extent of gel swelling, both being affected by the incorporation of nanofillers. Furthermore, it was demonstrated that the release rate and profile could be tailored using variable Fe3O4 nanoparticles load. Thus, this seems to be a promising strategy for the development of drug delivery systems with tailored released behavior.  相似文献   

17.
The search for novel molecular materials has focused on viruses as natural nanomaterials. Historically studied for their effects as pathogens, recent advances have incorporated viruses as substrates for chemical modification, materials development, and therapeutic design. Here we will discuss recent advances in chemical strategies for modifying viruses, and the applications of these technologies.  相似文献   

18.
Molecularly imprinted polymers for drug delivery   总被引:7,自引:0,他引:7  
Molecular imprinting technology has an enormous potential for creating satisfactory drug dosage forms. Although its application in this field is just at an incipient stage, the use of MIPs in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors, is receiving increasing attention. Examples of MIP-based DDS can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate, i.e. rate-programmed, activation-modulated, or feedback-regulated drug delivery. The utility of these systems for administering drugs by different routes (e.g. oral, ocular or transdermal) or trapping undesired substances under in vivo conditions is discussed. This review seeks to highlight the more remarkable advantages of the imprinting technique in the development of new efficient DDS as well as pointing out some possibilities to adapt the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed.  相似文献   

19.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

20.
The development and use of engineered nanomaterials is increasing rapidly and there are already a large number of consumer products containing nanomaterials. The possible release of nanomaterials from these products is still uncertain, as is their final fate and effects in the environment. Regulators need to deal with this lack of data when carrying out risk assessment and modify the existing risk assessment approaches to adapt them to the unique features of nanomaterials. Here we give an overview of various risk assessment approaches for nanomaterials developed worldwide, in which we describe their strengths and limitations, and have evaluated two of them, the Nano Risk Framework and the Precautionary Matrix for specific cases. Many properties of engineered nanomaterials are unknown and this causes deficiencies in the approaches studied. It is therefore essential to increase the present scarce data on nanomaterials released in the environment and close the gaps in the current methodologies to perform adequate risk assessment for nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号