首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pH in the cytoplasm of aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris was determined in dependence on the pH of the external medium, which was varied between pH 3 and pH 10. In aerobic cells of both species the cytoplasmic pH is maintained at a value above 7.2 even at an external pH of 3 and below 7.8 at an external pH of 10. In anaerobic cells the cytoplasmic pH shows linear dependence on external pH in the range of pH 6 to 9 (cytoplasmic pH 6.9 to 7.2), while below an external pH of 6 cytoplasmic pH is maintained at about 6.5.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - EDTA Ethylendiaminetetraacetic acid - MES 2-(N-Morpholino)-ethanesulfonic acid - MOPSO 3-(N-Morpholino)-2-hydroxy-propanesulfonic acid - NMR Nuclear Magnetic Resonance - pH cyt cytoplasmic pH - pH ex external pH - PIPES Piperazine-N,N-bis(2-ethanesulfonic acid) - PPi Pyrophosphate - PP1, PP2, PP3 1st, 2nd, 3rd phosphate group of polyphosphates - PP4 core phosphate groups of polyphosphates - TRIS Tris-hydroxymethyl-aminomethane  相似文献   

2.
The ring-opening reactions of the furanose forms of the penturonic acids D-arabinuronic acid (1), D-lyxuronic acid (2), D-riburonic acid (3), and D-xyluronic acid (4) in aqueous solution have been studied as a function of temperature and solution pH by 13C saturation-transfer n.m.r. (s.t.-n.m.r.) spectroscopy using 1-13C-substituted compounds. Unidirectional rate constants of ring-opening (kopen) have been determined for the cyclic forms of 1-4 in their protonated (pH 1.5) and ionized (pH 4.5) forms, and have been compared to the k-values measured previously for structurally related furanose sugars. At 50 degrees and pH 1.5, kopen values decrease as follows: alpha-xyluronic acid (2.57 s-1) greater than alpha-riburonic (1.65 s-1) greater than beta-arabinuronic (1.52 s-1) greater than beta-xyluronic (1.09 s-1) greater than beta-riburonic (0.76 s-1) greater than beta-lyxuronic (0.55 s-1) greater than alpha-arabinuronic (0.46 s-1) greater than alpha-lyxuronic (0.40 s-1). At 50 degrees and pH 4.5, this order changes significantly (e.g., beta-arabinuronate is most reactive); in general kopen values for beta anomers appear to be enhanced relative to those for corresponding alpha anomers, suggesting the involvement of intramolecular catalysis in which the carboxylate anion assists in abstracting the hydroxyl proton from O-1. Activation energies of ring-opening, determined for the alpha and beta anomers of 1-4, were found to depend on ring configuration and solution pH.  相似文献   

3.
The rate of the aerobic metabolism of pyruvic acid by bakers' yeast cells is determined mainly by the amount of undissociated acid present. As a consequence, the greatest rate of oxidation was observed at pH 2.8. Oxidation, at a slow rate, started at pH 1.08; at pH 9.4 there was no oxidation at all. The anaerobic metabolism, only a fraction of the aerobic, was observed only in acid solutions. There was none at pH values higher than 3. Pyruvic acid in the presence of oxygen was oxidized directly to acetic acid; in the absence of oxygen it was metabolized mainly by dismutation to lactic and acetic acids, and CO2. Acetic acid formation was demonstrated on oxidation of pyruvic acid at pH 1.91, and on addition of fluoroacetic acid. Succinic acid formation was shown by addition of malonic acid. These metabolic pathways in a cell so rich in carboxylase may be explained by the arrangement of enzymes within the cell, so that carboxylase is at the center, while pyruvic acid oxidase is located at the periphery. Succinic and citric acids were oxidized only in acid solutions up to pH 4. Malic and α-ketoglutaric acids were not oxidized, undoubtedly because of lack of penetration.  相似文献   

4.
E W Hafner  D Wellner 《Biochemistry》1979,18(3):411-417
The reactivity of the imino acids formed in the D- or L-amino acid oxidase reaction was studied. It was found that: (1) When imino acids reacted with the alpha-amino group of glycine or other amino acids, transimination yielded derivatives less stable to hydrolysis than the parent imino acids. In contrast, when imino acids reacted with the epsilon-amino group of lysine or other primary amines, transimination yielded derivatives more stable to hydrolysis than the parent imino acids. (2) Imino acids react rapidly with hydrazine and semicarbazide, forming stable hydrazones and semicarbazones. At pH 7.7, the rate of reaction of the imino acid analogue of leucine with semicarbazide was 10(4) times greater than that of the corresponding keto acid. The reaction of imino acids with these reagents is rapid enough to permit one to follow spectrophotometrically the amino acid oxidase reaction. Imino acids also reacted with cyanide to yield stable adducts. (3) The rate of hydrolysis of the imino acid analogue of leucine was independent of pH above pH 8.5. At lower pH values, the rate of hydrolysis increased with decreasing pH. At 25 degrees C and in the absence of added amino compounds, this imino acid had a half-life of 22 s at pH 8.5. Its half-life was 9.9 s at pH 7.9.  相似文献   

5.
The reaction of human myeloperoxidase with its product, hypochlorous acid was investigated using both rapid-scan spectrophotometry and the stopped-flow technique. In the reaction of myeloperoxidase with hypochlorous acid a primary compound is found with properties similar to that of compound I and which is converted into compound II. The primary reaction is strongly pH-dependent. At pH 7.2 the reaction is too fast to be measured but at higher pH values it is possible to determine the apparent second-order rate constant. Its value decreases to about 2 x 10(7) M-1.s-1 at pH 8.3 and to 2.3 (+/- 0.4) x 10(6) M-1.s-1 at pH 9.2, respectively. The dissociation constant for the formation of the primary compound is 25.7 (+/- 15.3) microM at pH 9.2 and about 2.5 microM at pH 8.3. The apparent second-order rate constant for the formation of compound II is hardly affected by pH and varies between 2 to 5 x 10(4) M-1.s-1 at pH 10.2 and pH 8.3, respectively. Reaction of myeloperoxidase with hypochlorous acid also resulted in irreversible partial bleaching of the chromophore. Chloride, which is a substrate of the enzyme not only protects myeloperoxidase against bleaching by hypochlorous acid but also competitively inhibits the binding of hypochlorous acid to myeloperoxidase, a process which also has been observed in the reaction with hydrogen peroxide. It is concluded that hypochlorous acid binds at the heme iron to form compound I.  相似文献   

6.
Formation of anhydrosugars in the chemical depolymerization of heparin.   总被引:77,自引:0,他引:77  
J E Shively  H E Conrad 《Biochemistry》1976,15(18):3932-3942
In the reactions used to break heparin down to mono- and oligosaccharides, androsugars are formed at two stages. The first of these is the well-known cleavage of heparin with nitrous acid to convert the N-sulfated D-glucosamines to anhydro-D-mannose residues; this reaction has been studied in detail. It is demonstrated here that only low pH (less than 2.5) reaction conditions favor the deamination of N-sulfated D-glucosamine residues; the reaction proceeds very slowly at pH 3.5 or above. On the other hand, N-unsubstituted amino sugars are deaminated at a maximum rate at pH 4 with markedly reduced rates at pH2 or pH6. At room temperature solutions of nitrous acid lose one-fourth to one-third of their capacity to deaminate amino sugars in 1 h at all pHs. A low pH nitrous acid reagent which will convert heparin quantitatively to its deamination products in 10 min at room temperature is described, and a comparison of the effectiveness of this reagent with other commonly used nitrous acid reagents is presented. It is also shown that conditions used for acid hydrolysis of heparin convert approximately one-fourth of the L-iduronosyluronic acid 2-sulfate residues to a 2,5-anhydrouronic acid. This product is an artifact of the reaction conditions, and its formation represents one of several pathways followed in the acid-catalyzed cleavage of the glycosidic bond of the sulfated L-idosyluronic acid residues.  相似文献   

7.
1. A radiochemical method for the studies on the microsomal UDPglucuronic acid metabolism has been developed. 2. The rat liver microsomes caused a rapid hydrolysis of UDPglucuronic acid to D-glucuronic acid 1-phosphate and further although much slower to free D-glucuronic acid. In Tris-HCl buffer (pH 7.4) they were produced in ratio 72 : 1. No other metabolites were found in measurable amounts. The pyrophosphatase splitting UDPglucuronic acid showed a pH optimum at 8.9, but the liberation of D-glucuronic acid from UDPglucuronic acid had two pH maxima (pH 3.5 and 8.5). EDTA appeared to be less powerful inhibitor of pyrophosphatase than previously suggested. About 25 per cent of the UDPglucuronic acid hydrolyzing activity was still remaining in the presence of 10 mM EDTA. D-Glucaro-1,4-lactone was found to have a slight inhibitory action on the pyrophosphatase activity. Citrate inhibited powerfully the hydrolysis of UDPglucuronic acid and the liberation of free D-glucuronic acid. Phosphate was also inhibitory. 3. In the presence of an exogenous UDPglucuronosyltransferase substrate, 4-nitrophenol, the formation of D-glucuronic acid 1-phosphate and free D-glucuronic acid were slightly reduced, and D-glucuronic acid 1-phosphate, 4-nitrophenylglucuronide and free D-glucuronic acid were produced in ratio 78 : 23 : 1. When 10 mM EDTA was added to diminish the hydrolytic consumption of the glucuronyl donor substrate, the corresponding ratio was still as unfavorable as 19 : 2.6 : 1. The measurable activity of UDPglucuronosyltransferase was lower in the presence of phosphate or citrate than in Tris-HCl buffer, although they protected the glucuronyl donor substrate against hydrolysis. 4. The results indicate that even in the presence of added glucuronyl acceptor substrate the hydrolysis of UDPglucuronic acid predominates the conjugation in rat liver microsomes. The rate of the hydrolysis of UDPglucuronic acid is quite considerable even in the presence of EDTA, and it is recommended to control the UDPglucuronic acid pyrophosphatase activity when UDPglucuronosyltransferase and glucuronidation reactions are studied. Free D-glucuronic acid appears to be produced from UDPglucuronic acid for further use via D-glucuronic acid 1-phosphate, the rate-limiting step being the hydrolysis of this intermediate. UDP-glucuronosyltransferase, glucuronides of either endogenous or exogenous aglycones and beta-glucuronidase have only a minor role in this respect in rat liver microsomes.  相似文献   

8.
The pH response of Shigella flexneri 2a 301 was identified by gene expression profiling. Gene expression profiles of cells grown in pH 4.5 or 8.6 were compared with the profiles of cells grown at pH 7.0. Differential expression was observed for 307 genes: 97 were acid up-regulated, 102 were acid down-regulated, 91 were base up-regulated, and 86 were base down-regulated. Twenty-seven genes were found to be both acid and base up-regulated, and 29 genes were both acid and base down-regulated. This study showed that (1) the most pH-dependent genes regulate energy metabolism; (2) the RpoS-dependent acid-resistance system is induced, while the glutamate-dependent acid resistance system is not; (3) high pH up-regulates some virulence genes, while low pH down-regulates them, consistent with Shigella infection of the low gut; and (4) several cross-stress response genes are induced by pH changes. These results also illustrate that many unknown genes are significantly regulated under acid or basic conditions, providing researchers with important information to characterize their function.  相似文献   

9.
The plasma-membrane H(+)-ATPase gene PMA1 was sequenced in four Dio-9-resistant strains of Saccharomyces cerevisiae, isolated independently. The same amino acid substitution Ala608----Thr was found in the four mutated strains. The mutant ATPase activity was decreased while the Km value for MgATP was increased. The ATPase efficiency (V/Km) of the mutant was reduced by a factor of 25 under acid conditions (pH 5.5), and by a factor of 10 at physiological pH (pH 6.6). The mutation also strongly reduces the inhibition by vanadate of ATPase activity, suggesting that the altered amino acid is involved in phosphate binding and/or in the E1-E2 transition.  相似文献   

10.
The chromophore of bacteriorhodopsin undergoes a transition from purple (570 nm absorbance maximum) to blue (605 nm absorbance maximum) at low pH or when the membrane is deionized. The blue form was stable down to pH 0 in sulfuric acid, while 1 M NaCl at pH 0 completely converted the pigment to a purple form absorbing maximally at 565 Other acids were not as effective as sulfuric in maintaining the blue form, and chloride was the best anion for converting blue membrane to purple membrane at low pH. The apparent dissociation constant for Cl- was 35 mM at pH 0, 0.7 M at pH 1 and 1.5 M at pH 2. The pH dependence of apparent Cl- binding could be modeled by assuming two different types of chromophore-linked Cl- binding site, one pH-dependent. Chemical modification of bacteriorhodopsin carboxyl groups (probably Asp-96, -102 and/or -104) by 1-ethyl-3-dimethlyaminopropyl carbodiimide, Lys-41 by dansyl chloride, or surface arginines by cyclohexanedione had no effect on the conversion of blue to purple membrane at pH 1. Fourier transform infrared difference spectroscopy of chloride purple membrane minus acid blue membrane showed the protonation of a carboxyl group (trough at 1392 cm -1 and peak at 1731 cm -1). The latter peak shifted to 1723 cm -1 in D2O. Ultraviolet difference spectroscopy of chloride purple membrane minus acid blue membrane showed ionization of a phenolic group (peak at 243 nm and evidence for a 295 nm peak superimposed on a tryptophan perturbation trough). This suggests the possibility of chloride-induced proton transfer from a tyrosine phenolic group to a carboxylate side-chain. We propose a mechanism for the purple to acid blue to chloride purple transition based on these results and the proton pump model of Braiman et al. (Biochemistry 27 (1988) 8516-8520).  相似文献   

11.
The phosphinic acid isosteres of di-, tetra- and hexapeptides containing a hydrophobic amino acid side chains at the P1-P'1 positions are powerful inhibitors of Human Immunodeficiency Virus protease. Ki's ranged from 0.4 nM to 26 microM at pH 6.5 and were lower at pH 4.5. The compounds showed no activity against trypsin, weak activity against renin at pH 6.5, moderate activity against pepsin at pH 2.0 (Ki values in the microM range) and substantial activity against cathepsin D at pH 3.5 (Ki values from 9 to 300 nM).  相似文献   

12.
Acetic acid is by-product from fermentation processes for producing succinic acid using Mannheimia succiniciproducens . To obtain pure succinic acid from the final fermentation broth, acetic acid was selectively removed based on the different extractability of succinic acid and acetic acid with pH using tri-n-octylamine (TOA) as extractant. When successive batch extractions were performed using 0.25 mol TOA kg(-1) dissolved in 1-octanol at pH 5, the mol ratio of succinic acid to acetic acid before extraction was 4.9 and the final ratio after the fourth batch was 9.4.  相似文献   

13.
聚丙烯酸分离纯化苦瓜种仁碱性蛋白的方法及影响因素   总被引:1,自引:1,他引:0  
以苦瓜籽为材料,研究了聚丙烯酸分离纯化苦瓜种仁碱性蛋白的方法及影响因素。等电点沉淀试验表明,柠檬酸、盐酸分别调节苦瓜种仁粗提液pH至6.0、4.0时,各有14.62%和32.49%的苦瓜种仁蛋白被沉淀。醋酸的等电点沉淀作用呈现阶段性特点,pH6.0和4.0时分别有26.17%和38.72%的苦瓜种仁蛋白被沉淀。醋酸、盐酸和柠檬酸处理的1mL苦瓜种仁粗提液(pH4.0),1%PAA选择性沉淀碱性蛋白(等电点pI为8.65~9.30)的最佳用量分别为100μL、120μL和100μL。醋酸调节苦瓜种仁粗提液pH分别至5.0、4.0和3.0,等电点沉淀后的上清液用PAA沉淀碱性蛋白,当PAA(1%)用量为160μL/mL提取液时,pH5.0和3.0样液分别有33.77%和43.56%蛋白质被沉淀;当PAA用量为120μL/mL提取液时,pH4.0样液中30.83%蛋白质被沉淀。PAA-蛋白质复合物溶解于碱性溶液(pH>9.0),当溶液NaCl浓度为3.0%时,溶液蛋白质浓度最高。PAA选择性沉淀的苦瓜种仁碱性蛋白经SephadexG-75柱层析分离,分别在175min和300min出现主峰Ⅰ和Ⅱ。SDS-PAGE和IEF分析表明主峰Ⅰ的分子量约为30kD,pI值约为9.5,主峰Ⅱ的分子量约为10kD,pI值约为9.3。  相似文献   

14.
AIMS: To improve the production of clavulanic acid through the development of strains, the selection of a production medium and a pH shift strategy in a bioreactor. METHODS AND RESULTS: Streptomyces clavuligerus mutant 15 was selected by antibacterial activities. As a result of pH control in a 2.5 l bioreactor, the highest productivity (3.37 microg x ml(-1) x h(-1)) was obtained at a controlled pH of 7.0. CONCLUSIONS: The highest level of production obtained was an increase of about 36% compared with a non-controlled pH. When the production of clavulanic acid reached the maximum level, the pH was shifted from 7.0 to 6.0 for reduction in decomposition rate. The maximum concentration of clavulanic acid was maintained for 24 h as a result of the pH shift control, and a significant reduction in the decomposition of clavulanic acid was obtained. SIGNIFICANCE AND IMPACT OF THE STUDY: Clavulanic acid decomposition was considerably reduced as a result of the pH shift control. The results of this study can be applied for the efficient production of beta-lactamase inhibitory antibiotics.  相似文献   

15.
DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.  相似文献   

16.
DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.  相似文献   

17.
Harper JR  Balke NE 《Plant physiology》1981,68(6):1349-1353
The phenolic compounds salicylic acid (o-hydroxybenzoic acid) and ferulic acid (4-hydroxy-3-methoxycinnamic acid) inhibited K+ (86Rb+) absorption in excised oat (Avena sativa L. cv. Goodfield) root tissue. Salicylic acid was the most inhibitory. The degree of inhibition was both concentration- and pH-dependent. With decreasing pH, the inhibitory effect of the phenolic increased. During the early stages of incubation, the time required to inhibit K+ absorption was also pH- and concentration-dependent. At pH 4.0, 5×10−4 molar salicylic acid inhibited K+ absorption about 60% within 1 minute; whereas, at pH 6.5, this concentration affected absorption only after 10 to 15 minutes. However, at 5 × 10−3 molar and pH 6.5, salicylic acid was inhibitory within 1 minute. The capacity of the tissue to recover following a 1-hour treatment in 5 × 10−4 molar salicylic acid ranged from no recovery at pH 4.5 to complete recovery at pH 7.5. The absorption of salicylic acid was pH-dependent, also. As pH decreased, more of the phenolic compound was absorbed by the tissue. The increased absorption of the compound at low pH most likely contributed to apparent tissue damage at pH 4.5 and might have accounted for the lack of recovery of K+ absorption as pH decreased.  相似文献   

18.
Burkholderia cepacia CC-Al74 with a high ability for solubilizing tricalcium phosphate (TCP) was used to study the P-solubilization mechanism. We collected filtrates able to solubilize TCP from the cultures of strain CC-Al74 and demonstrated that the P-solubilization increased from 0 microg ml(-1) to 200 microg ml(-1) during exponential growth, when the pH decreased from 8 to 3. HPLC-analysis revealed that the solubilization of TCP was mainly caused by the release of 16.3 mM gluconic acid. At this concentration, gluconic acid was capable of solubilizing 376 microg ml(-1) of TCP whereas water at pH 3 only solubilized 35 microg ml(-1). The difference is due to the final H+ concentrations which were 13.5 mM and 1 mM in 16.3 mM gluconic acid and deionized water, respectively at pH 3.  相似文献   

19.
20.
《Free radical research》2013,47(2):69-76
Both oxypurinol and uric acid react with the myeloperoxidase-derived oxidant hypochlorous acid at physiological pH, and they can protect the elastase-inhibitory capacity of human α1 -antiprotease against inactivation by hypochlorous acid. Allopurinol does not protect α1-antiprotease, possibly because the redox potential of allopurinol at physiological pH is too positive to permit oxidation by hypochlorous acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号