首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA-fiber EPR spectroscopy and its application to studies of the DNA binding orientation and dynamic properties of Cu(II) ions and their complexes with amino acids and peptides are reviewed. Cu(II) ions bind in at least two different binding modes; one mode was mobile while the other mode fixed the orientation of the coordination plane. The hydroxyl groups of L-Ser and L-Thr fixed the coordination plane of their respective Cu(II) complexes parallel to the DNA base pair plane, whereas Cu(II) complexes of Lys and Arg induced several binding modes, depending on the tertiary structure of the DNA and the chirality of the amino acids. Unusually broadened signals observed for the His complex were assigned to a mono-L-His complex stacked stereospecifically along the DNA double helix. In comparison, Cu(II). Xaa-Xaa' -His type complexes oriented in the minor groove with different affinities and extents of randomness depending on the Xaa-Xaa' sequence and the chirality of Xaa or Xaa' while the C-terminal Xaa residues in Cu(II).Arg-Gly-His-Xaa (Xaa=L-Leu or L-Glu) decreased the stereospecificity and the stability of the complexes bound to DNA. In contrast to Xaa-Xaa'- His complexes, the coordination planes of Cu(II).Gly-L-His-Gly and Cu(II).Gly-L-His-L-Lys complexes were found to lie parallel to the DNA-fiber axis. Dinuclear Cu(II).carnosine complexes were also shown to bind to DNA stereospecifically.  相似文献   

2.
The Cu(II) complexes of tridentate amino acids and related amines in alkaline solution were studied by EPR spectroscopy. Line shapes, g∥ and A∥ of each amino acid complex were compared with those of the corresponding amine complex. The results indicate that aromatic amino acids, monoaminodicarboxylic amino acids, arginine, methionine, and lysine bind to Cu(II) via the amino and carboxyl α groups. On the other hand cysteine, 2-3-diaminopropionic acid and hydroxy amino acids appear to be coordinated through the α-amino group and the third potentially binding group. Evidence is presented for the formation of mixed complexes in the cases of histidine and 2-4-diaminobutyric acid, whereas a glycine-like complex with apical coordination of the δ-amino groups is proposed for the ornithine-Cu(II) complex.  相似文献   

3.
Absorption spectroscopy and circular dichroism (CD) have been used to characterize the DNA binding of [Fe(phen)3]2+, [Fe(phen)2(DIP)]2+ and [Fe(phen)(DIP)2]2+ where phen and DIP stand for 1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline, respectively. Both [Fe(phen)3]2+ and [Fe(phen)2(DIP)]2+ bind weakly to calf thymus DNA (CT-DNA) in an electrostatic mode, while [Fe(phen)(DIP)2]2+ binds more strongly to CT-DNA, possibly in an intercalation mode. The hypochromicity, red shift and Kb increase in the order [Fe(phen)3]2+ < [Fe(phen)2(DIP)]2+ < [Fe(phen)(DIP)2]2+ in accordance with the increase in size and hydrophobicity of the iron(II) complexes. The thermodynamic parameters obtained suggest that the DNA binding of both [Fe(phen)3]2+ and [Fe(phen)2(DIP)]2+ is entropically driven, while that of [Fe(phen)(DIP)2]2+ is enthalpically driven. A strong CD spectrum in the UV and visible region develops upon addition of CT-DNA into the racemate solution of each iron(II) complex (Pfeiffer effect). This has revealed that a shift in diastereomeric inversion equilibrium takes place in the solution to yield an excess of one of the DNA-complex diastereomers. The striking resemblance of the CD spectral profiles to those of the pure delta-enantiomer indicates that the delta-enantiomer of the iron(II) complexes is preferentially bound to CT-DNA. The mechanism of the development of Pfeiffer CD is proposed on the basis of kinetic studies on the DNA binding of the racemic iron(II) complexes.  相似文献   

4.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

5.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of complexes of Co(II), Ni(II) and Cu(II) with L-dopa and 1,10-phenanthroline. The titrations were performed in the presence of different relative concentrations (M:L:X = 1.0:2.5:2.5; 1.0:2.5:5.0; 1.0:5.0:2.5) of metal (M) to L-dopa (L) and 1,10-phenanthroline (X) with sodium hydroxide in varying concentrations (0-60% v/v) of 1,2-propanediol-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303.0 K. Stability constants of the ternary complexes were refined using MINIQUAD75. The species MLXH, MLX, ML2X and MLX2H for Co(II) and Cu(II) and MLXH, MLX and MLX2H for Ni(II) were detected. The extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of 1, 2-propanediol-water mixtures and plausible equilibria for the formation of species were also presented. The bioavailability of the metal ions is explained based on the speciation.  相似文献   

6.
A series of complexes of the type [Pt(phen)(AA)]+ (where AA is the anion of glycine, L-alanine, L-leucine, L-phenylalanine, L-tyrosine, or L-tryptophan) has been synthesized. These complexes have been characterized by electronic absorption, infrared, and 1H NMR spectroscopy. The interaction of these complexes with calf thymus DNA has been studied using fluorescence spectroscopy. They inhibit the intercalation of ethidium bromide in DNA by intercalative binding at low concentrations and show nonintercalative binding at higher concentrations.  相似文献   

7.
Several new Cu-hippurate derivative-phenanthroline ternary complexes have been prepared. The X-ray structure of one of them, [Cu(hip)(phen)2]+·(hip) (2) (where hip is hippurate and phen is 1,10-phenanthroline) has been solved. The structure of this new compound shows important differences (3D-pattern) to other similar related complexes (2D-pattern). A study of the biological activity of [Cu(hip)(phen)2]+·(hip)·2H2O (2), [Cu(BGG)(phen)2]+·(BGG)·6H2O (3), [Cu(BIGG)2(phen)](H2O) (4) and [Cu(I-hip)(bpy)2]+·(I-hip)·3.5H2O (5) (where I-hip is ortho-iodohippurate, BGG corresponds to benzoylglycilglycine, and BIGG is ortho-iodobenzoylglycilglycine) is included and compared with the anti-proliferative activity of [Cu(I-hip)(phen)2]+·(I-hip)·7H2O (1) previously described, resulting in a greater cytotoxic activity of the compounds with 1,10-phenanthroline instead of those with 2,2′-bipyridyl, in the same way that removing iodine substitution or lengthening the peptidic chain diminishes the activity of compounds compared with 1. The presence of an ortho-iodine group and the direct bond between Ar-CO and glycine moieties yield to the best results.  相似文献   

8.
Mixed coordination compounds of Cu(II) with sulfonamides and 1,10-phenanthroline as ligands have been prepared and characterised. Single crystal structural determination of the complex [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)(2)(phen)] shows Cu(II) ions are located in a highly distorted octahedral environment, probably as a consequence of the Jahn-Teller effect. The FT-IR and electronic paramagnetic resonance (EPR) spectra are also discussed. The mixed complexes prepared undergo an extensive DNA cleavage in the presence of ascorbate and hydrogen peroxide. Two of the complexes have higher nucleolytic efficiency than the bis(o-phenanthroline)copper(II) complex.  相似文献   

9.
10.
Three new ternary peptide-Cu(II)-1,10-phenanthroline (phen) complexes, [Cu(L-ala-gly)(phen)].3.5H(2)O 1, [Cu(L-val-gly)(phen)] 2 and [Cu(gly-L-trp)(phen)].2H(2)O 3, have been prepared and structurally characterised. These compounds exist as distorted square pyramidal complexes with the five co-ordination sites occupied by the tridentate peptide dianion and the two heterocyclic nitrogens of the phenanthroline ligand. The bulk of the lateral chain in the peptide moiety determines the relative disposition of the phen ligand. Thus, in [Cu(L-val-gly)(phen)] 2, the phenanthroline plane is deviated towards the opposite side of the isopropyl group of the L-valine moiety. On the other hand, in [Cu(gly-L-trp)(phen)].2H(2)O 3 the absence of stacking interactions between phen and indole rings and the presence of an intramolecular CH...pi interaction should be pointed out. These complexes exhibit significant differences in their nuclease activity which depends on the nature of the peptidic moiety, the complex [Cu(gly-L-trp) (phen)].2H(2)O 3 being the most active.  相似文献   

11.
A novel ternary copper(II) complex, [Cu(phen)(L-Thr)(H2O)](ClO4) (phen=1,10-phenanthroline, L-Thr=L-threonine), has been synthesized and structurally characterized. The complex crystallized in a triclinic system with space group P1 , a=7.526(15) A, b=11.651(2) A, c=12.127(2) A, alpha=115.41(3) degrees , beta=102.34(3) degrees and gamma=91.33(3) degrees . The copper(II) center is situated in a distorted square-pyramidal geometry. At a concentration of 10(-6) mol L(-1), the complex exhibited potent cytotoxic effects against human leukemia cell line HL-60 and human stomach cancer cell line SGC-7901 with inhibition rates of over 90%, however, less pronounced effects were observed for human liver carcinoma cell line BEL-7402 and human non-small-cell lung cancer cell line A-549. The complex was shown to bind DNA by intercalation and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

12.
New 1,10-phenanthroline derivatives bearing diarylamino and heteroaromatic moieties in the 3,8-position have been prepared by a palladium-catalyzed C-N bond formation reaction. Formation of Ru(II) complexes with the chelating ligands and their photophysical and electrochemical redox properties have been examined.  相似文献   

13.
Two ternary Cu(II) complexes of 1,10-phenanthroline (phen) and singly (Hsal(-)) or dideprotonated (sal(2-)) salicylate ligands were synthesized, their X-ray crystal structure and electron paramagnetic resonance spectral characteristics determined, and evaluated for anti-convulsant activities in the maximal electroshock (MES) and Metrazol models of seizure and Rotorod toxicity. The X-ray crystal structure of [bis(1,10-phenanthroline)-mu-bis(salicylato-O,O')dicopper(II)] dihydrate, 1, ([Cu(II)(2)(phen)(2)(sal)(2)].2[H(2)O]), shows it to be binuclear. This dimer consists of two centrosymmetrically related pseudo-five coordinate Cu(II) atoms 3.242(2) A apart and bridged by two dideprotonated salicylate ligands. The X-ray crystal structure of [bis(1,10-phenanthroline)(salicylato)copper(II)][salicylate] monohydrate, 2, ([Cu(II)(phen)(2)(Hsal)](+)[Hsal](-)[H(2)O]), shows it to be mononuclear. This complex cation exhibits a highly irregular distorted square pyramidal geometry about the Cu(II) atom, (4+1+1*). Each salicylate is singly deprotonated and one of them is ligand bonded in an asymmetric chelating mode. EPR results for 2 indicate that in concentrated DMF solution phen remains bonded to copper but salicylate is likely monodentate in contrast to the situation for 1. However, in dilute DMF solution, both 1 and 2 form the same species, which accounts for the similarity in anti-convulsant activity of the two compounds. Both 1 and 2 were found to be effective in preventing MES-induced seizures and ineffective in preventing Metrazol-induced seizures. Rotorod toxicity, consistent with central nervous system depression, paralleled the observed anti-convulsant activity. It is suggested that the observed anti-convulsant activity is consistent with central nervous system depression as a physiological mechanism in overcoming MES-induced seizures due to MES-induced brain inflammatory disease.  相似文献   

14.
DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II).Gly-Gly-His-derived metallopeptides containing D- vs. L-amino acid substitutions in the first peptide position. This examination included studies of Cu(II).D-Arg-Gly-His and Cu(II).D-Lys-Gly-His for comparison to metallopeptides containing L-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II).D/L-Pro-Gly-His and Cu(II).D/L-Pro-Lys-His. Results indicated that L-Arg/Lys to D-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA, whereas the replacement of L-Pro by D-Pro in Cu(II).L-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness observed between the D- vs. L-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the epsilon-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II).Xaa-Xaa'-His metallopeptides with DNA are also discussed.  相似文献   

15.
The molecular structure of praseodymium (III) complex with 1,10-phenanthroline (phen), [Pr(phen)2Cl3·OH2] (1) was determined by single-crystal X-ray diffraction. Crystal data: crystal system, triclinic, space group P and Z = 2, a = 7.1110(7) ?, b = 10.1716(10) ?, c = 17.2367(18) ?, α = 80.922(5)°, β = 78.759(5)°, γ = 70.151(5)°, R1 = 0.036; wR2 = 0.076 for all data. Treatment of aqueous solution of [Pr(phen)2Cl3·OH2] (1) with thallium phenylcyanamide salts yield [Pr(phen)2(L)3] (L = pcyd (2), 2-Clpcyd (3), 2,3,5-Cl3pcyd (4), 2,3,4,5-Cl4pcyd (5)). Four new praseodymium (III) complexes have been characterized by IR, UV-Vis and 1H NMR spectroscopy as well as elemental analysis. The 1H NMR spectra of these complexes show broadening of ligand protons attributed to coordination of paramagnetic center.  相似文献   

16.
Copper(II) complexes with thiosemicarbazones have been shown to be more active in cell destruction, in the inhibition of DNA synthesis than the uncomplexed ligand. Several derivatives of thiosemicarbazones and their iron and copper complexes have been studied for their cytotoxicity and inhibiting activity against DNA synthesis. In the present work complexes formed in H2O-DMSO solution between copper(II) and the acetophenone thiosemicarbazone (ATSC) and the o-aminobenzaldehyde thiosemicarbazone (o-NH2TSC) have been studied. EPR studies have been performed at different pH values and metal-to-ligand ratios. The spectra have been recorded at both room (298 K) and low temperatures (120 K). A possible relationship between structure and activity is attempted on the basis of the EPR data.  相似文献   

17.
The DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline(phen) and 4,7-diphenyl-1,10-phenanthroline(dip), [Fe(phen)(3)](2+), [Fe(phen)(2)(dip)](2+) and [Fe(phen)(dip)(2)](2+) has been characterized by spectrophotometric titration and melting temperature measurements. The salt concentration dependence of the binding constant has allowed us to dissect the DNA-binding constant and free energy change of each iron(II) complex into the nonelectrostatic and polyelectrolyte contributions. A comparison of the nonelectrostatic components in the binding free energy changes among iron(II) complexes has made it possible to rigorously evaluate the contribution of the ligand substituents to the DNA-binding event. The peripheral substitution of phen by two phenyl groups increases the nonelectrostatic binding constant of the iron(II) complex more than 20 times, which is equivalent to approximately 7.5 kJ mol(-1) of more favorable contribution to the DNA binding. In general, the iron(II) complexes studied have higher affinity towards the more facile A-T sequence than the G-C sequence. This preferential binding may be attributed to the steric effect induced by the ancillary part of the ligands in the course of DNA binding. The binding of disubstituted iron(II) complex to DNA is quite strong as reflected in the modest increase in the denaturation temperature (T(m)) of double helical DNA upon the interaction with the iron(II) complex.  相似文献   

18.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

19.
The kinetics of the complexation of Ni(II) with 1,10-phenanthroline(phen), 4,7-dimethyl-1,10-phenanthroline(dmphen), and 5-nitro-1,10-phenanthroline(NO2phen) in acetonitrile-water mixed solvents of acetonitrile mole fraction xAN = 0, 0.05, 0.1, 0.2 and 0.3 at 288, 293, 298 and 303 K have been studied by stopped-flow method at ionic strength of 1.0 (NaClO4) and pH 7.4. The corresponding activation enthalpy, entropy, and free energy were determined from the observed rate constants. The complexation of Ni(II) with the three ligands has comparable observed rate constants; in pure water the observed rate constants are (×103 dm3 mol−1 s−1) 2.31, 2.57, and 1.38 for phen, dmphen and NO2phen, respectively. The corresponding activation parameters for the three ligands are, however, considerably different; in pure water the ΔHS (kJ mol−1/J K−1 mol−1) are 44.7/−30.2, 19.5/−114.1, and 32.2/−76.9 for phen, dmphen, and NO2phen, respectively. The effects of solvent composition on the kinetics are also markedly different for the three ligands. The ΔH and ΔS showed a minimum at xAN = 0.1 for phen; for dmphen and NO2phen, however, maxima at xAN = 0.2 were observed. Nevertheless, there is an effective enthalpy-entropy compensation for the ΔHS of all the three ligands, demonstrating the significant effects of the changes in solvation and solvent structure on the complexation kinetics. As the rate-determining step of Ni(II) complexation is the dissociation of a water molecule from Ni(II), the solvent and ligand dependencies in the Ni(II) complexation kinetics are ascribed to the change in solvation status of the ligands and the altered solvent structures upon changing solvent composition.  相似文献   

20.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号