首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The energetics of the B-Z transition of two different types of cloned alternating purine/pyrimidine DNA sequences have been analysed by a two dimensional electrophoretic technique. Since the transition between right handed and left handed forms of these polymers is detected by alterations of electrophoretic mobilities of topoisomers of the plasmid DNA molecules, the method is not dependent on Z-DNA binding ligands. The measurements reflect intrinsic properties of the DNA unperturbed by the free energy of binding such a ligand.

Direct evidence from the analysis of topoisomer distributions is presented which shows that d(GC)n.d(GC)n sequence elements within an E. coli plasmid will adopt a Z conformation in-vivo under conditions of blocked protein synthesis. Evidence for the in-vivo occurrence of Z-DNA was not detected in plasmid DNA isolated from bacterial cells growing in the absence of protein synthesis inhibitors.

A model is proposed for a function for the B-Z transition in ensuring the correct pairing of homologous chromosomes during meiosis.  相似文献   

2.
3.
4.
Kim HE  Ahn HC  Lee YM  Lee EH  Seo YJ  Kim YG  Kim KK  Choi BS  Lee JH 《FEBS letters》2011,585(5):772-778
The human DNA-dependent activator of IFN-regulatory factor (DAI) protein, which activates the innate immune response in response to DNA, contains two tandem Z-DNA binding domains (Zα and Zβ) at the NH(2) terminus. The hZβ(DAI) structure is similar to other Z-DNA binding proteins, although it demonstrates an unusual Z-DNA recognition. We performed NMR experiments on complexes of hZβ(DAI) with DNA duplex, d(CGCGCG)(2), at a variety of protein-to-DNA molar ratios. The results suggest that hZβ(DAI) binds to Z-DNA via an active-di B-Z transition mechanism, where two hZβ(DAI) proteins bind to B-DNA to form the hZβ(DAI)-B-DNA complex; the B-DNA is subsequently converted to left-handed Z-DNA. This novel mechanism of DNA binding and B-Z conversion is distinct from Z-DNA binding of the human ADAR1 protein.  相似文献   

5.
The identification of left handed or Z-DNA in solutions of poly d(GC) in high salt suggests that left handed DNA may exist in biological systems if stabilized at lower ionic strength. In the present study we show that binding of polyarginine to the Z form of poly d(GC) results in a protein-Z-DNA complex stable near physiological ionic strength. The percentage of Z-DNA in the low salt polyarginine-poly d(GC) complex was measured from the DNA circular dichroism spectrum. The ratio of Z to B-DNA is a linear function of polyarginine concentration and is sensitive to proteolytic digestion by trypsin. These results suggest that arginine-rich proteins may stabilize Z-DNA in vivo.  相似文献   

6.
The Zab domain of the editing enzyme ADAR1 binds tightly and specifically to Z-DNA stabilized by bromination or supercoiling. A stoichiometric amount of protein has been shown to convert a substrate of suitable sequence to the Z form, as demonstrated by a characteristic change in the CD spectrum of the DNA. Now we show that Zab can bind not only to isolated Z-forming d(CG)(n) sequences but also to d(CG)(n) embedded in B-DNA. The binding of Zab to such sequences results in a complex including Z-DNA, B-DNA, and two B-Z junctions. In this complex, the d(CG)(n) sequence, but not the flanking region, is in the Z conformation. The presence of Z-DNA was detected by cleavage with a Z-DNA specific nuclease, by undermethylation using Z-DNA sensitive SssI methylase, and by circular dichroism. It is possible that Zab binds to B-DNA with low affinity and flips any favorable sequence into Z-DNA, resulting in a high affinity complex. Alternatively, Zab may capture Z-DNA that exists transiently in solution. The binding of Zab to potential as well as established Z-DNA segments suggests that the range of biological substrates might be wider than previously thought.  相似文献   

7.
We have analyzed, at nucleotide resolution, the progress of the B-to-Z transition as a function of superhelical density in a 2.2-kilobase plasmid containing the sequence d(C-A)31.d(T-G)31. The transition was monitored by means of reactivity to two chemical probes: diethyl pyrocarbonate, which is sensitive to the presence of Z-DNA, and hydroxylamine, which detects B-Z junctions. At a threshold negative superhelical density between about 0.048 and 0.056, hyper-reactivity to diethyl pyrocarbonate appears throughout the CA/TG repeat and remains as the superhelical density is further increased. However, there is no reactivity characteristic of B-Z junctions until the superhelical density reaches 0.084, when single cytosines at each end of the repeat become hyper-reactive to hydroxylamine. A two-dimensional gel analysis of this system by others (Haniford, D. B., and Pulleyblank, D. E. (1983) Nature 302, 632-634) indicates that only about half of the 62 base pairs of the CA/TG repeat undergo the initial transition at omega = 0.056. Our results indicate that this region of Z-DNA is free to exist anywhere along the CA/TG repeat and is probably constantly in motion. Well defined B-Z junctions are seen only when there is sufficient supercoiling to convert the entire CA/TG sequence to Z-DNA. The implications for possible B-Z transitions in chromosomal domains of different sizes are discussed.  相似文献   

8.
E M Lafer  R Sousa    A Rich 《The EMBO journal》1985,4(13B):3655-3660
It is shown that anti-Z-DNA antibody binding can stabilize sequences of d(CG/GC)n and d(CA/GT)n in the Z-DNA conformation in a plasmid in the complete absence of supercoiling. This effect is quantitated by using antibody preparations of different affinities and varying concentrations. The d(CG/GC)n sequence can be stabilized under physiological conditions. This is the first demonstration that a region of Z-DNA can be stabilized by protein binding in a completely relaxed plasmid under physiological conditions. The antibody-Z-DNA complex in the relaxed plasmid is shown to be an equilibrium state and not a long-lived kinetic intermediate since specific binding of the antibody to linearized plasmids containing Z-forming sequences is observed.  相似文献   

9.
Lim W  Feng YP 《Biopolymers》2005,78(3):107-120
Despite the existence of numerous models to account for the B-Z DNA transition, experimenters have not yet arrived at a conclusive answer to the structural and dynamical features of the B-Z transition. By applying the stochastic difference equation to simulate the B-Z DNA transition, we have shown that the stretched intermediate model of the B-Z transition is more probable than other B-Z transition models such as the Harvey model. This is accomplished by comparing potential energy profiles of various B-Z DNA transition models and calculating relative probabilities based on the stochastic difference equation with respect to length (SDEL) formalism. The results garnered in this article allow for new approaches in determining the structural transition of B-DNA to Z-DNA experimentally. We have also simulated the B-A DNA transition using the stochastic difference equation. Unlike the B-Z DNA transition, the mechanism for the B-A DNA transition is well established. The variation in the pseudorotation angle during the transition is in good agreement with experimental results. Qualitative features of the simulated B-A transition also agree well with experimental data. The SDEL approach is thus a suitable numerical technique to compute long-time molecular dynamics trajectory for DNA molecules.  相似文献   

10.
Abstract

An analysis of the B-to-Z transition as a function of supercoiling for a natural Z-DNA- forming sequence found in plasmid pBR322 is presented at nucleotide resolution. The analysis is based on reactivity to four chemical probes which exhibit hyperreactivity in the presence of Z-DNA: hydroxylamine, osmium tetroxide, diethyl pyrocarbonate and dimethyl sulfate. We find that the initial transition occurs largely within a 14 base pair region which is mostly alternating purines and pyrimidines. With increasing negative supercoiling, Z-DNA extends into flanking regions having less and less alternating character, first in one direction and then in the other. Evidence of B-Z junctions is seen at four sites bracketing these three adjacent regions. One of these Z-forming regions contains the non-alternating sequence CTCCT, suggesting that such sequences can form Z-DNA without great difficulty if they are adjacent to alternating sequences. A plasmid containing three copies of a 61 base pair fragment bearing the entire Z-forming region shows equal reactivity of all three copies at any given superhelical density, implying that they compete equally and independently for the torsional strain energy which promotes the B-Z transition, and are unaffected by adjacent sequences more than 20–30 base pairs away.  相似文献   

11.
F Azorin  A Nordheim    A Rich 《The EMBO journal》1983,2(5):649-655
Negative supercoiling of the plasmid pBR322 with or without an insert of (dG-dC)n induces the formation of Z-DNA as measured by the binding of antibodies specific for Z-DNA. Increasing the concentration of Na+ (or K+) is shown to inhibit the B to Z-DNA conversion. This may be due to the effect of the cation on the B-Z junction. Using the data for B to Z-DNA conversion of the (dG-dC)n inserts, we have estimated the free energy change per base pair as well as the energy of the B-Z junction. In pBR322, a 14-bp segment [CACGGGTGCGCATG] is believed to form Z-DNA at bacterial negative superhelical densities under salt conditions which are similar to those found in vivo.  相似文献   

12.
Isolation and characterization of Z-DNA binding proteins from wheat germ   总被引:11,自引:0,他引:11  
E M Lafer  R Sousa  B Rosen  A Hsu  A Rich 《Biochemistry》1985,24(19):5070-5076
The preparation of a heterogeneous non-histone protein extract from wheat germ utilizing Br-poly(dG-dC).poly(dG-dC) (Z-DNA) affinity chromatography is described. The binding characteristics of antibodies against Z-DNA are used as a model system to define important criteria that the DNA binding behavior of a Z-DNA binding protein should display. We show that the wheat germ extract contains DNA binding proteins specific for left-handed Z-DNA by these criteria. The affinity of the proteins measured by competition experiments was approximately 10(5) greater for Br-poly(dG-dC).poly(dG-dC) (Z-DNA) than for poly(dG-dC).poly(dG-dC) (B-DNA). The affinity of the proteins for plasmid DNA increases with increasing negative superhelicity which is known to stabilize Z-DNA. The proteins are shown to compete with Z-DNA antibodies for binding to supercoiled plasmids. Finally, the affinity for two plasmids at a given superhelical density is greater for the plasmid containing an insert known to form Z-DNA than for a plasmid without the insert. The proteins exhibit a 2-3-fold greater affinity for stretches of (dC-dA)n.(dT-dG)n over stretches of (dG-dC)n.(dG-dC)n when both sequences are induced to form Z-DNA by supercoiling.  相似文献   

13.
The formation of melted regions from A + T-rich sequences and left-handed Z-DNA by alternating purine-pyrimidine sequences will both be facilitated by negative supercoiling, and thus if the sequences are present within the same plasmid molecule they will compete for the free energy of supercoiling. We have studied a series of plasmids that contain either (CG)8 or (TG)12 sequences in either G + C or A + T-rich contexts, by means of two-dimensional gel electrophoresis and chemical modification. We observe both B-Z and helix-coil transitions in all plasmids at elevated temperatures and low ionic strength. The plasmids fall into a number of different classes, in terms of the conformational behavior. As the superhelix density is increased, pCG8/vec ((CG)8 in G + C-rich context) undergoes an initial B-Z transition, followed by melting transitions in sequences remote from the (CG)8 sequence. The two transitions are coupled through the topology of the molecule but are otherwise independent. When the (CG)8 sequence was placed in an A + T-rich context (pCG8/col), the helix-coil transition was perturbed by the presence of the Z-DNA segment. Replacement of the (CG)8 tracts by (TG)12 sequences resulted in a further level of interaction between the transitions. Statistical mechanical modeling of the transitions suggested that at intermediate levels of negative supercoiling the Z-DNA formed by the (TG)12 sequence has a lowered probability due to the helix-coil transition in the A + T-rich sequences. These studies illustrate the complexities of competing conformational equilibria in supercoiled DNA molecules.  相似文献   

14.
Plasmid pGC20 containing the (dGC)9 insert in SmaI recognition site has been used to study the inhibition of cleavage by different restriction endonuclease due to Z-DNA formation in (dCG)10 sequence of the negatively supercoiled plasmid. Data obtained indicate the different sensitivity of restriction endonucleases to DNA conformational perturbations resulted from the Z-DNA formation. Therefore, the inhibition of DNA cleavage by a particular restriction endonuclease cannot serve as a criterion for the estimation of the length of B-Z junctions in circular supercoiled DNAs.  相似文献   

15.
Recombinant plasmid pGC20 containing (GC)9-insert into SmaI site of pUC19 has been used to study the inhibition of cleavage by six restriction endonucleases; KpnI, SacI, EcoRI and also BamHI, XbaI and SalI, due to Z-DNA formation in negatively supercoiled plasmid. The recognition sites of these enzymes were located at different distances on both sides of the (CG)10-sequence. It was shown that the inhibition of the cleavage by KpnI, SacI and EcoRI was decreased in this series as fast as the distance between recognition site and B-Z junction was increased, and no inhibition of cleavage by EcoRI was found. However, such a correlation was not found in the series of BamHI, XbaI and SalI. In contrast with EcoRI the cleavage by SalI was inhibited completely. These results indicate the difference for "sensitivity" of restriction endonucleases to the structural perturbations of DNA associated with B-Z junctions. It seems to depend on features of the enzyme-substrate interaction mechanisms and also on recognition and flanking sequences of DNA. Consequently, experiments with the inhibition of the cleavage by any enzyme can not help to determine the dimension of the region of DNA with altered structure.  相似文献   

16.
Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zα domain, which has been shown to specifically recognize Z-DNA. The biological function of Zα is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zα domain in isolation. We have hypothesized that the recognition of a Z-DNA sequence by the ZαADAR1 domain is context specific, occurring under energetic conditions, which favor Z-DNA formation. To test this hypothesis, we have applied atomic force microscopy to image ZαADAR1 complexed with supercoiled plasmid DNAs. We have demonstrated that the ZαADAR1 binds specifically to Z-DNA and preferentially to d(CG)n inserts, which require less energy for Z-DNA induction compared to other sequences. A notable finding is that site-specific Zα binding to d(GC)13 or d(GC)2C(GC)10 inserts is observed when DNA supercoiling is insufficient to induce Z-DNA formation. These results indicate that ZαADAR1 binding facilities the B-to-Z transition and provides additional support to the model that Z-DNA binding proteins may regulate biological processes through structure-specific recognition.  相似文献   

17.
Cytosine methylation enhances Z-DNA formation in vivo.   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of cytosine methylation on the supercoil-stabilized B-Z equilibrium in Escherichia coli was analyzed by two independent assays. Both the M.EcoRI inhibition assay and the linking-number assay have been used previously to establish that dC-dG segments of sufficient lengths can exist as left-handed helices in vivo. A series of dC-dG plasmid inserts with Z-form potential, ranging in length from 14 to 74 base pairs, was investigated. Complete methylation of cytosine at all HhaI sites, including the inserts, was obtained by coexpression of the HhaI methyltransferase (M.HhaI) in cells also carrying a dC-dG-containing plasmid. Both assays showed that for all lengths of dC-dG inserts, the relative amounts of B and Z helices were shifted to more Z-DNA in the presence of M.HhaI than in the absence of M.HhaI. These results indicate that cytosine methylation enhances the formation of Z-DNA helices at the superhelix density present in E. coli. The B-Z equilibrium, in combination with site-specific base methylation, may constitute a concerted mechanism for the modulation of DNA topology and DNA-protein interactions.  相似文献   

18.
A brominated poly[d(G-C)].poly[d(G-C)] which forms a stable Z-DNA helix under physiological salt conditions was prepared. The rabbits were immunized with the brominated polynucleotide complexed with methylated bovine serum albumin. Antisera that are highly specific to the Z-DNA were produced: there is practically no interaction between the antisera and the native or denaturated DNA and the B-form of poly[d(G-C)].poly[d(G-C)]. This makes possible their use as reagents for determining the presence of Z-DNA in biological systems. A sensitive enzyme-linked immunosorbent assay (ELISA) that permits detection of 5 ng/ml Z-DNA was developed. This method was used for studying the B-Z transition and for antigenic determinant characterization. It was established, that formaldehyde amino-derivatives interact with the antigenic determinant and prevent the immunochemical assay of Z-DNA. The H1 and H3 histones prevent and and spermine increases the interaction of Z-DNA with antibodies.  相似文献   

19.
In order to examine sequence-dependent structural effects in DNA, the ability of alternating purine-pyrimidine fragments to undergo a B-Z transition when cloned in a supercoiled plasmid was determined solely as a function of sequence, with base and nearest-neighbor composition held constant. Sequences of 22 GC and 2 AT base pairs were synthesized such that the AT base pairs varied between contiguous placement and separation by eight GC base pairs. Results show, surprisingly, that the ease of the B-Z transition varies with the position of the two AT base pairs, occurring at lower superhelical densities when AT base pairs are contiguous, and at higher torsional strain when the AT base pairs are moved further apart.  相似文献   

20.
Methylation of cytosine at the 5-carbon position (5 mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)(5) repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号