首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Restriction enzymes are one of the everyday tools used in molecular biology. The continuously expanding panel of known restriction enzymes (several thousands) renders their optimal use virtually impossible without computerized assistance. Several manufacturers propose on-line sites that assist scientists in their restriction enzyme work, however, none of these sites meet all the actual needs of laboratory workers, and they do not take into account the enzymes actually present in one's own laboratory.  相似文献   

2.

Introduction  

Validity of biomarkers may be affected if studies do not include certain features in their design. We evaluated whether translational research studies of potential biomarkers incorporated design features important for valid clinical associations.  相似文献   

3.

Background  

How DNA repair enzymes find the relatively rare sites of damage is not known in great detail. Recent experiments and molecular data suggest that individual repair enzymes do not work independently of each other, but interact with each other through charges exchanged along the DNA. A damaged site in the DNA hinders this exchange. The hypothesis is that the charge exchange quickly liberates the repair enzymes from error-free stretches of DNA. In this way, the sites of damage are located more quickly; but how much more quickly is not known, nor is it known whether the charge exchange mechanism has other observable consequences.  相似文献   

4.
Insights on the evolution of trehalose biosynthesis   总被引:3,自引:0,他引:3  

Background  

The compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes.  相似文献   

5.

Background  

Cytosolic glutathione transferases (cGST) are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates.  相似文献   

6.

Objective  

Here we report the improved results of a new siRNA design program and analysis tool called siRNA_profile that reveals an additional criterion for bioinformatic search of highly functional siRNA sequences.  相似文献   

7.

Background  

Most of the existing in silico phosphorylation site prediction systems use machine learning approach that requires preparing a good set of classification data in order to build the classification knowledge. Furthermore, phosphorylation is catalyzed by kinase enzymes and hence the kinase information of the phosphorylated sites has been used as major classification data in most of the existing systems. Since the number of kinase annotations in protein sequences is far less than that of the proteins being sequenced to date, the prediction systems that use the information found from the small clique of kinase annotated proteins can not be considered as completely perfect for predicting outside the clique. Hence the systems are certainly not generalized. In this paper, a novel generalized prediction system, PPRED (Phosphorylation PREDictor) is proposed that ignores the kinase information and only uses the evolutionary information of proteins for classifying phosphorylation sites.  相似文献   

8.

Background  

Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic trypanosomatids is an important metabolic pathway. There is however, only limited information available on the structure and reactivity of the component enzymes in trypanosomatids. Since isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for therapeutic intervention it is important to characterize the pathway components.  相似文献   

9.

Background  

The prevalence of tuberculosis, the prolonged and expensive treatment that this disease requires and an increase in drug resistance indicate an urgent need for new treatments. The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis, and is absent from humans. To underpin future drug development it is important to assess which enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them.  相似文献   

10.

Background  

The physiological characteristics of muscle activity and the assessment of muscle strength represent important diagnostic information. There are many devices that measure muscle force in humans, but some require voluntary contractions, which are difficult to assess in weak or unconscious patients who are unable to complete a full range of voluntary force assessment tasks. Other devices, which obtain standard muscle contractions by electric stimulations, do not have the technology required to induce and measure reproducible valid contractions at the optimum muscle length.  相似文献   

11.

Background  

Many studies have suggested that variability in the attractiveness of humans to host-seeking mosquitoes is caused by differences in the make-up of body emanations, and olfactory signals in particular. Most investigations have either been laboratory-based, utilising odour obtained from sections of the body, or have been done in the field with sampling methods that do not discriminate between visual, physical and chemical cues of the host. Accordingly, evidence for differential attractiveness based on body emanations remains sparse in spite of the far-reaching epidemiological implications of this phenomenon.  相似文献   

12.

Background  

Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics.  相似文献   

13.

Background  

In humans trophoblast invasion and vascular remodeling are critical to determine the fate of pregnancy. Since guinea-pigs share with women an extensive migration of the trophoblasts through the decidua and uterine arteries, and a haemomonochorial placenta, this species was used to evaluate the spatio-temporal expression of three enzymes that have been associated to trophoblast invasion, MMP-2, MMP-9 and tissue kallikrein (K1).  相似文献   

14.
15.

Background  

Tripeptidyl-peptidase I, also known as CLN2, is a member of the family of sedolisins (serine-carboxyl peptidases). In humans, defects in expression of this enzyme lead to a fatal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis. Similar enzymes have been found in the genomic sequences of several species, but neither systematic analyses of their distribution nor modeling of their structures have been previously attempted.  相似文献   

16.

Background  

Computational modeling and analysis of metabolic networks has been successful in metabolic engineering of microbial strains for valuable biochemical production. Limitations of currently available computational methods for metabolic engineering are that they are often based on reaction deletions rather than gene deletions and do not consider the regulatory networks that control metabolism. Due to the presence of multi-functional enzymes and isozymes, computational designs based on reaction deletions can sometimes result in strategies that are genetically complicated or infeasible. Additionally, strains might not be able to grow initially due to regulatory restrictions. To overcome these limitations, we have developed a new approach (OptORF) for identifying metabolic engineering strategies based on gene deletion and overexpression.  相似文献   

17.

Background  

Biological systems process the genetic information and environmental signals through pathways. How to map the pathways systematically and efficiently from high-throughput genomic and proteomic data is a challenging open problem. Previous methods design different heuristics but do not describe explicitly the behaviours of the information flow.  相似文献   

18.

Background  

Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.  相似文献   

19.

Background  

(+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号