首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen Bacillus strains isolated from rhizosphere, histoplane and phyllosphere of different plant species were identified by 16S rDNA gene sequencing and evaluated for in vitro auxin production as well as growth stimulation of Vigna radiata (L.) Wilczek. Auxin production by Bacillus spp. in L-broth medium supplemented with 1,000 μg ml−1 L-tryptophan ranges from 0.60 to 3.0 μg IAA ml−1 as revealed by gas chromatography and mass spectrometric (GC–MS) analysis. Rhizospheric isolates exhibit relatively more IAA synthesis than histoplane and phyllosphere isolates. Plant microbe interaction experiments conducted under gnotobiotic conditions recorded 55.55, 46.46 and 46.20% increase in shoot length with Bacillus megaterium MiR-4, B. pumilus NpR-1 and B. subtilis TpP-1, respectively, over control. Bacillus inoculations also increased shoot fresh weight with B. megaterium MiR-4 (60.94%) and B. pumilus NpR-1 (37.76%). Highly significant positive correlation between auxin production analyzed by GC–MS and shoot length (r = 0.687**, P = 0.01) and shoot fresh weight (r = 0.703**, P = 0.01) was noted under gnotobiotic conditions. Similarly, significant correlation was also found between auxin production by Bacillus spp. (GC–MS analysis) and different growth parameters such as shoot length (r = 0.495*, P = 0.05), number of pods (r = 0.498*, P = 0.05) and grain weight (r = 0.537*, P = 0.05) at full maturity under natural wire house conditions. Results showed that auxin production potential of plant associated Bacillus spp. can be effectively exploited to enhance the growth and yield of V. radiata.  相似文献   

2.
A Gram-positive rod-shaped bacterium isolated on nutrient agar plates incubated at 28 ± 2°C. The identity of the bacterium was confirmed by sequencing of the 16S rRNA gene and it reveals that it shares highest similarity with Bacillus thioparus CECT 7196T (99.08%). It was capable of growing at temperatures ranging from 4 to 40°C, but optimum growth was observed at 28 ± 2°C. Strain NII-0902 is endowed with multiple plant growth promotion attributes such as phosphate solubilization, Indole acetic acid (IAA), siderophore and HCN production, which were expressed differentially at sub-optimal temperatures (5–40°C). It was able to solubilize phosphate (17.7 μg ml−1), and produce IAA (139.7 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). Bacillus sp. NII-0902 has a potential ability to colonize roots visualized by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots and truly supported by scanning electron micrograph. Hence, it is proposed that, Bacillus thioparus sp. NII-0902 could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   

3.
Cyanobacteria are commonly used for the phytostimulation and biofertilization of agriculture crops due to their nitrogen-fixing ability. However, the contribution by their phytohormones has been neglected. This study focuses on the screening of rhizospheric and free-living cyanobacteria for in vitro phytohormones production and growth stimulation in wheat. Selected isolates were shown to release cytokinin and indole-3-acetic acid (IAA) by using UPLC coupled with MS/MS via an electrospray interface. The maximum cytokinin and IAA concentration was 22.7 pmol mg−1 ch-a and 38 pmol mg−1 ch-a, respectively, in the culture medium of Chroococcidiopsis sp. Ck4 and Anabaena sp. Ck1. The growth of wheat inoculated with cyanobacterial strains was stimulated under axenic as well as field conditions. Seed germination, shoot length, tillering, number of lateral roots, spike length, and grain weight were significantly enhanced in inoculated plants. The maximum increase in grain weight (43%) was demonstrated in wheat plants inoculated with Chroococcidiopsis sp. Ck4 under natural conditions. Positive linear correlation of cyanobacterial cytokinin with shoot length (r = 0.608; P = 0.01), spike length (r = 0.682; P = 0.01), and grain weight (r = 0.0.869; P = 0.01) was recorded. Similarly, cyanobacterial IAA was correlated with the root growth parameters shoot length (r = 0.588; P = 0.01), spike length (r = 0.0.689; P = 0.01), and weight of seeds (r = 0.480; P = 0.05). The endogenous phytohormones pool of the plant was enhanced significantly as a result of the plant–cyanobacteria association in the rhizosphere. It was concluded that cyanobacterial phytohormones are a major tool for improved growth and yield in wheat.  相似文献   

4.
A potential bacterial strain designated as NII-0928 isolated from Western ghat forest soil with multiple plant growth promoting attributes, and it has been identified and characterized. Plant growth promoting traits were analyzed by determining the P-solubilization efficiency, Indole acetic acid production, HCN, siderophore production and growth in nitrogen free medium. It was able to solubilize phosphate (76.6 μg ml−1), and produce indole acetic acid (58.9 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). 16S rRNA gene sequencing reveals the identity of the isolate as Serratia nematodiphila with which it shares highest sequence similarity (99.4%). Seed bacterization with black pepper cuttings in greenhouse trials using Sand: Soil: FYM with three individual experimental sets with their respective control showed clearly the growth promoting activity. Hence, Serratia nematodiphila NII-0928 is a promising plant growth promoting isolate showing multiple PGPR attributes that can significantly influence black pepper cuttings. The result of this study provides a strong basis for further development of this strain as a bioinoculants to attain the desired plant growth promoting activity in black pepper growing fields.  相似文献   

5.
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

6.
Lindane or γ- hexachlorocyclohexane (γ-HCH) is a chlorinated pesticide and its toxic effects on biota necessitate its removal. Microbial degradation is an important process for pesticide bioremediation and the role of soil fungi in recycling of organic matter prompted us to study the biodegradation of lindane using fungi. This study aims at enrichment, isolation and screening of soil fungi capable of metabolizing lindane. Two Fusarium species (F. poae and F. solani) isolated from the pesticide contaminated soil showed better growth on the plates supplemented with lindane as a sole carbon source, when compared with the growth performance of other fungal isolates from the same contaminated soil. However, ANOVA revealed a significant difference in fungal biomass production in both F. poae (F = 22.02; N = 15; P < 0.001) and F. solani (F = 268.75; N = 15; P < 0.001) across different lindane concentrations (0–600 μg ml−1). Growth of both Fusarium sp. was maximum at a lindane concentration of 100 μg ml−1, while minimum at 600 μg ml−1 concentrations. Results on the time dependent release of chlorine by the Fusarium strains in the presence of various concentration of lindane showed the highest mineralization of the pesticide on 10th day of incubation. Time dependent variations in the release of chlorine from 1st to 10th day by both the selected fungal strains were found to be statistically significant. A significant positive relationship exists between fungal biomass increase and chlorine release existed for both F. solani (R2 = 0.960) and F. poae (R2 = 0.628). The results of gas chromatograph analysis of γ- HCH confirmed the biodegradation and utilization of γ- HCH by F. poae and F. solani. The data on lindane degradation by the two fungal strains demonstrated that the biodegradation of lindane by F. solani (59.4%) was slightly higher than that by the F. poae (56.7%).  相似文献   

7.
Phytohormones from rhizobacterial origin have been linked to their phytostimulation potential. However, while studying the efficacy of plant growth promoting bacteria, focus has always been on a single hormone. The role of plant hormones often overlay and they mutually modulate their effect. In current study focus was on the role of two hormones (cytokinins and indole acetic acid) in phytostimulation by rhizobacteria. Endogenous rhizosphere bacteria were isolated and screened for the presence of phytohormones. Bacterial strains from three different genera (Pseudomonas, Bacillus and Azospirillum) were screened positive for cytokinins and IAA. Phytohormones were simultaneously determined in SPE purified bacterial extract by ultra performance liquid chromatography (UPLC) coupled to a tandem mass spectrometer through electrospray interface. Cytokinins and IAA were determined in positive and negative mode, respectively with MRM scan. Zeatin, zeatin riboside and dihydrozeatin riboside were detected and quantified in the selected strains. Significant positive correlation between cytokinins and IAA in bacterial culture and plant endogenous hormones (r = 0.933 and r = 0.983; P = 0.01, respectively) was observed. However, strains with high IAA to cytokinins ratio could hardly enhance in-planta cytokinins, indicating antagonistic relation between the two hormones. Significant correlation of cytokinin with shoot length (r = 0.797; P = 0.01), fresh weight (r = 0.685; P = 0.01) and dry weight (r = 0.704; P = 0.01) was reported under axenic conditions. Bacterial IAA was correlated negatively to root length (r = 0.853; P = 0.01) and positively correlated to the number of roots (r = 0.964; P = 0.01). In natural conditions maximum increase in spike length (33%), number of tillers (71%) and weight of seeds (39%) was documented at final harvest in bacterially inoculated plants.  相似文献   

8.
Plant growth‐promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth‐promoting characteristics, such as indole‐3‐acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio‐inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non‐native strains.  相似文献   

9.
The aim of this study was to assess the effect of a commercial green tea extract (TEAVIGO™) on the microbial growth of three probiotic strains (Lactobacillus and Bifidobacterium), as well as three pathogenic bacteria. MIC and co-culture studies were performed. The MICs of the green tea extract against Staphylococcus aureus and Streptococcus pyogenes (100 μg ml−1) were considerably lower than those against the probiotic strains tested (>800 μg ml−1) and Escherichia coli (800 μg ml−1). In co-culture studies, a synergistic effect of the probiotic strains and the green tea extract was observed against both Staph. aureus and Strep. pyogenes. Green tea extract in combination with probiotics significantly reduced the viable count of both pathogens at 4 h and by 24 h had completely abolished the recovery of viable Staph. aureus and Strep. pyogenes. These reductions were more significant than the reductions induced by probiotics or green tea extracts used separately. These results demonstrate the potential for combined therapy using the green tea extract plus probiotics on microbial infections caused by Staph. aureus and Strep. pyogenes. As probiotics and the green tea extract are derived from natural products, treatment with these agents may represent important adjuncts to, or alternatives to, conventional antibiotic therapy.  相似文献   

10.
Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD + bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD + antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92–5.33%), 25 produced indole acetic acid (1.63–7.78 μg ml−1) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD +) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD + bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD +) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant−1 respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD + isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.  相似文献   

11.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

12.

In the present study, we examined the synergistic effect of phosphate solubilizing bacteria (PSB) and the chemical phosphate on the growth, photosynthetic efficiency, phosphorus (P) uptake, antioxidant activity, and yield of upland rice. Three effective bacterial strains with potent P solubilizing activity viz., Bacillus licheniformis (688.18 µg ml?1), Pantoea dispersa (570.90 µg ml?1), and Staphylococcus sp. (551.81 µg ml?1), were isolated from rice rhizosphere to study their impact on upland rice growth and yield under field conditions for two consecutive years. The experiment data revealed significant increments in shoot height, shoot dry weight, total chlorophyll, carotenoid, chlorophyll fluorescence (fv/fm), P uptake, antioxidant activity, and yield characteristics in upland rice treated with individual PSB or their consortia alone, compared to uninoculated control. However, the integrated use of PSB with 50% recommended P dose showed maximum increment in growth indices (21.25%, 21.86% increase in shoot length and 87.18%, 97.06% increase in shoot dry weight), P uptake (110.37%, 122.78% increase), and yield (50.58%, 35.64% increase) compared to uninoculated control for 2018 and 2019, respectively, indicating a reduction in the dependence of chemical P fertilizer by 50%. Therefore, it can be concluded that combined application of PSB and 50% recommended dose of chemical P can be implied for the sustainable cultivation of upland rice systems to give maximum benefits to the farmers and the environment.

  相似文献   

13.
Aims:  The aim of this study was to investigate the potential of bacterial strains of Bacillus, Pseudomonas, Escherichia, Micrococcus and Staphylococcus genera associated with wild herbaceous flora to enhance endogenous indole-3-acetic acid (IAA) content and growth of Triticum aestivum var. Inqalab-91.
Methods and Results:  Gas chromatography and mass spectrometric (GC–MS) analysis revealed that bacterial strains produced 0·6–8·22 μg IAA ml−1 in the presence of L-tryptophan. Plant microbe experiments showed a significant positive correlation between auxin production by bacterial strains and endogenous IAA content of T. aestivum for GC–MS ( r  = 0·618; P  = 0.05) and colorimetric analysis ( r  = 0·693; P  = 0.01). Similarly, highly significant positive correlation for shoot length ( r  = 0·627; P  = 0.01) and shoot fresh weight ( r  = 0·626; P  = 0.01) was observed with auxin production under axenic conditions. Bacterial inoculations also enhanced shoot length (up to 29·16%), number of tillers (up to 97·35%), spike length (up to 25·20%) and seed weight (up to 13·70%) at final harvest.
Conclusions:  Bacterial strains have the ability to increase the endogenous IAA content and growth of T. aestivum var. Inqalab-91.
Significance and Impact of the Study:  Microbial strains of wild herbaceous flora can be effectively used to enhance the growth and yield of agronomically important crops.  相似文献   

14.
We evaluated phytohormone and polyamine biosynthesis, siderophore production, and phosphate solubilization in two strains (Cd and Az39) of Azospirillum brasilense used for inoculant formulation in Argentina during the last 20 years. Siderophore production and phosphate solubilization were evaluated in a chemically defined medium, with negative results. Indole 3-acetic acid (IAA), gibberellic acid (GA3), and abscisic acid (ABA) production were analyzed by gas chromatography-mass spectrometry. Ethylene, polyamine, and zeatin (Z) biosynthesis were determined by gas chromatography-flame ionization detector and high performance liquid chromatography (HPLC-fluorescence and -UV), respectively. Phytohormones IAA, Z, GA3, ABA, ethylene, and growth regulators putrescine, spermine, spermidine, and cadaverine (CAD) were found in culture supernatant of both strains. IAA, Z, and GA3 were found in all two strains; however, their levels were significantly higher (p < 0.01) in Cd (10.8, 2.32, 0.66 μg ml−1). ABA biosynthesis was significantly higher (p < 0.01) in Az39 (0.077 μg ml−1). Ethylene and polyamine CAD were found in all two strains, with highest production in Cd cultured in NFb plus l-methionine (3.94 ng ml−1 h−1) and Az39 cultured in NFb plus l-lysine (36.55 ng ml−1 h−1). This is the first report on the evaluation of important bioactive molecules in strains of A. brasilense as potentially capable of direct plant growth promotion or agronomic yield increase. Az39 and Cd showed differential capability to produce the five major phytohormones and CAD in chemically defined medium. This fact has important technological implications for inoculant formulation as different concentrations of growth regulators are produced by different strains or culture conditions.  相似文献   

15.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

16.
Plant growth-promoting rhizobacteria (PGPR) that produce antifungal metabolites are potential threats for the arbuscular mycorrhizal (AM) fungi known for their beneficial symbiosis with plants that is crucially important for low-input sustainable agriculture. To address this issue, we used a compartmented container system where test plants, Vigna radiata, could only reach a separate nutrient-rich compartment indirectly via the hyphae of AM fungi associated with their roots. In this system, where plants depended on nutrient uptake via AM symbiosis, we explored the impact of various PGPR. Plants were inoculated with or without a consortium of four species of AM fungi (Glomus coronatum, Glomus etunicatum, Glomus constrictum, and Glomus intraradices), and one or more of the following PGPR strains: phenazine producing (P+) and phenazine-less mutant (P), diacetylphloroglucinol (DAPG) producing (G+) and DAPG-less mutant (G) strains of Pseudomonas fluorescens, and an unknown antifungal metabolite-producing Alcaligenes faecalis strain, SLHRE425 (D). PGPR exerted only a small if any effect on the performance of AM symbiosis. G+ enhanced AM root colonization and had positive effects on shoot growth and nitrogen content when added alone, but not in combination with P+. D negatively influenced AM root colonization, but did not affect nutrient acquisition. Principal component analysis of all treatments indicated correlation between root weight, shoot weight, and nutrient uptake by AM fungus. The results indicate that antifungal metabolites producing PGPR do not necessarily interfere with AM symbiosis and may even promote it thus carefully chosen combinations of such bioinoculants could lead to better plant growth.  相似文献   

17.
Biofertilizers offer alternative means to promoting cultivation of medicinal plants less dependent on chemical fertilizers. Present study was aimed at evaluating the potential of phosphate-solubilizing bacteria (PSB) Burkholderia gladioli MTCC 10216, B. gladioli MTCC 10217, Enterobacter aerogenes MTCC 10208 and Serratia marcescens MTCC 10238 for utilizing Mussoorie rock phosphate (MRP) to enhance plant growth, and stevioside (ST) and rebaudioside-A (R-A) contents of Stevia rebaudiana. The solubilization of MRP by PSB strains varied from 1.4 to 15.2 μg ml−1, with the highest solubilization by Enterobacter aerogenes 10208. The PSB treatment increased the growth and ST and R-A contents of plants. Plant growth and stevioside contents were more pronounced with plants treated with a mixture of strains and grown in MRP amended soil compared to the unamended soil. The increment in shoot length (47.8%), root length (17.4%), leaf dry weight (164%), stem dry weight (116%), total shoot biomass (136%) resulted in enhanced productivity of ST (291%) and R-A (575%) in plants inoculated with mixture of PSB as compared to the uninoculated plants. The soils of PSB treated plants contained more available P than the soils of uninoculated plants (increase of 86–576%). PSB inoculated plants also recorded higher P content (64–273% increase) compared to uninoculated plants. The PSB strains differed in the extent of rhizosphere colonization, carbon source utilization pattern and whole cell fatty acids methyl esters composition.  相似文献   

18.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

19.
Hyptis suaveolens L. (Poit.) essential oil was tested in vitro on the growth and morphogenesis of Fusarium oxysporum f.sp. gladioli (Massey) Snyder & Hansen, which causes Fusarium corm rot and yellows in various susceptible cultivars of gladiolus. The fungitoxicity of the oil was measured by percentage radial growth inhibition using the poisoned food technique (PF) and volatile activity assay (VA). The mycelial growth of the test fungus was completely inhibited at 0.998 and 0.748 μg ml−1 concentration of oil in PF and VA, respectively. Essential oil was found to be fungicidal in nature at 1.247 and 0.998 μg ml−1 concentration of oil in PF and VA, respectively. Determination of conidial germination in the presence of oil was also carried out and it was found that the oil exhibited 100% inhibition of conidial germination at 0.450 μg ml−1 concentration. The effect of essential oil on the yield of mycelial weight was observed and it was found that at 0.873 μg ml−1 concentration no mycelium was recorded and 100% inhibition was observed. The fungitoxicity of oil did not change even on exposure to 100°C temperature or to autoclaving, and the oil also retained its fungicidal nature even after storage of 24 months. The main changes observed under light microscopy after oil treatment were a decrease and loss of conidiation and anomalies in the hyphae such as a decrease in the diameter of hyphae and granulation of cytoplasm. The treatment of the oil also showed highly reduced cytoplasm in the hyphae, showing clear retraction of the cytoplasm from the hyphae and ultimately in some areas hyphae without cytoplasm were also found. GC-MS studies of the essential oil revealed that the oil consisted of 24 compounds with 1,8-cineole as major component accounting for 44.4% of the total constituents.  相似文献   

20.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号