共查询到20条相似文献,搜索用时 15 毫秒
1.
Uhlén M 《BioTechniques》2008,44(5):649-654
The use of affinity-based tools has become invaluable as a platform for basic research and in the development of drugs and diagnostics. Applications include affinity chromatography and affinity tag fusions for efficient purification of proteins as well as methods to probe the protein network interactions on a whole-proteome level. A variety of selection systems has been described for in vitro evolution of affinity reagents using combinatorial libraries, which make it possible to create high-affinity reagents to virtually all biomolecules, as exemplified by generation of therapeutic antibodies and new protein scaffold binders. The strategies for high-throughput generation of affinity reagents have also opened up the possibility of generating specific protein probes on a whole-proteome level. Recently, such affinity proteomics have allowed the detailed analysis of human protein expression in a comprehensive manner both in normal and disease tissue using tissue microarrays and confocal microscopy. 相似文献
2.
Project ownership is an essential but sometimes overlooked ingredient for a successful undergraduate research experience. We have embarked on an experiment in undergraduate education that targets isolation of microbes from rainforest plants and characterization of natural products as objectives for discovery-based undergraduate research. 相似文献
3.
4.
Outer membrane vesicles (OMVs) are released spontaneously during growth by many Gram‐negative bacteria. They present a range of surface antigens in a native conformation and have natural properties like immunogenicity, self‐adjuvation and uptake by immune cells which make them attractive for application as vaccines against pathogenic bacteria. In particular with Neisseria meningitidis, they have been investigated extensively and an OMV‐containing meningococcal vaccine has recently been approved by regulatory agencies. Genetic engineering of the OMV‐producing bacteria can be used to improve and expand their usefulness as vaccines. Recent work on meningitis B vaccines shows that OMVs can be modified, such as for lipopolysaccharide reactogenicity, to yield an OMV product that is safe and effective. The overexpression of crucial antigens or simultaneous expression of multiple antigenic variants as well as the expression of heterologous antigens enable expansion of their range of applications. In addition, modifications may increase the yield of OMV production and can be combined with specific production processes to obtain high amounts of well‐defined, stable and uniform OMV particle vaccine products. Further improvement can facilitate the development of OMVs as platform vaccine product for multiple applications. 相似文献
5.
6.
A comprehensive review of microbial electrochemical systems as a platform technology 总被引:1,自引:0,他引:1
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology. 相似文献
7.
8.
9.
Kakizaki I Suto S Tatara Y Nakamura T Endo M 《Biochemical and biophysical research communications》2012,419(2):344-349
Mitochondrial trifunctional protein (MTP), which consists of the MTPα and MTPβ subunits, catalyzes long-chain fatty acid β-oxidation. MTP deficiency in humans results in Reye-like syndrome. Here, we generated Drosophila models of MTP deficiency by targeting two genes encoding Drosophila homologs of human MTPα and MTPβ, respectively. Both Mtpα(KO) and Mtpβ(KO) flies were viable, but demonstrated reduced lifespan, defective locomotor activity, and reduced fecundity represented by the number of eggs laid by the females. The phenotypes of Mtpα(KO) flies were generally more striking than those of Mtpβ(KO) flies. Mtpα(KO) flies were hypersensitive to fasting, and retained lipid droplets in their fat body cells as in non-fasting conditions. The amount of triglyceride was also unchanged upon fasting in Mtpα(KO) flies, suggesting that lipid mobilization was disrupted. Finally, we showed that both Mtpα(KO) and Mtpβ(KO) flies accumulated acylcarnitine and hydroxyacylcarnitine, diagnostic markers of MTP deficiencies in humans. Our results indicated that both Mtpα(KO) and Mtpβ(KO) flies were impaired in long-chain fatty acid β-oxidation. These flies should be useful as a model system to investigate the molecular pathogenesis of MTP deficiency. 相似文献
10.
11.
12.
Jiayang Li 《中国科学:生命科学英文版》2018,(1)
正Since the launch in 1950,Science China Series and Science Bulletin have published numerous significant scientific achievements,witnessing the development of science and technology in China and serving as a bridge connecting Chinese scientists with their counterparts in the international scientific community. 相似文献
13.
小线虫,大发现:Caenorhabditis elegans在生命科学研究中的重要贡献 总被引:13,自引:0,他引:13
自20世纪60年代开始,秀丽线虫作为重要的模式生物在生命科学的发展过程中发挥着举足轻重的作用。线虫中的许多重大发现为人们理解复杂的细胞生命活动做出了极大的贡献。本文对秀丽线虫的研究历史、重要成果及研究前景作一简要综述。 相似文献
14.
Brandl M 《Journal of liposome research》2007,17(1):15-26
Vesicular phospholipid gels (VPGs) represent semi-solid phospholipid dispersions. Their morphology is truly vesicular with aqueous compartments both within the core of the vesicles and in-between the vesicles. VPGs are suited to carry both hydrophilic, amphiphilic and lipophilic drugs. Their drug load is stable since there is no concentration gradient between the vesicles' core and the surrounding water phase. VPGs are suited to release drugs in a controlled manner, and thus may serve as depot implants. When blended with excess aqueous medium VPGs are easily converted into small-sized liposome (SUV) dispersions showing high encapsulation efficiencies for all kinds of drugs. VPG-formulations with various cytostatic drugs have been tested successfully in human xenografts. Obviously, the vesicles protect the drugs from premature metabolic inactivation and/or elimination and guide them to solid tumors with enhanced vascular permeability (passive targeting). Furthermore, when mounted on a filter support, VPGs represent a tight diffusion barrier suitable for screening of oral drug permeability, as demonstrated by a set of 21 drug compounds. Permeability values were shown to fit well with human absorption in vivo, indicating that the model is suited for rapid screening of passive transport properties of new chemical entities. 相似文献
15.
基因表达系列分析(serialanalysisofgeneexpression,SAGE)是一种快速分析特定组织或细胞内基因表达信息的技术,不但可以比较不同组织细胞在不同时间、空间条件下基因表达的差异,还能发现新基因。近几年来,SAGE技术在动物基因表达研究中的应用取得了飞速发展。就SAGE技术的原理、实验路线、优缺点和改进以及SAGE在动物科学研究中的研究现状及应用前景作一简要介绍。 相似文献
16.
Electron tomography (ET) is a three-dimensional technique suitable to study pleomorphic biological structures with nanometer resolution. This makes the methodology remarkably versatile, allowing the exploration of a large range of biological specimens, both in an isolated state and in their cellular context. The application of ET has undergone an exponential growth over the last decade, enabled by seminal technological advances in methods and instrumentation, and is starting to make a significant impact on our understanding of the cellular world. While the attained results are already remarkable, ET remains a young technique with ample potential to be exploited. Current developments towards large-scale automation, higher resolution, macromolecular labeling and integration with other imaging techniques hold promise for a near future in which ET will extend its role as a pivotal tool in structural and cell biology. 相似文献
17.
18.
19.
Elmnasser N Guillou S Leroi F Orange N Bakhrouf A Federighi M 《Canadian journal of microbiology》2007,53(7):813-821
In response to consumer preferences for high quality foods that are as close as possible to fresh products, athermal technologies are being developed to obtain products with high levels of organoleptic and nutritional quality but free of any health risks. Pulsed light is a novel technology that rapidly inactivates pathogenic and food spoilage microorganisms. It appears to constitute a good alternative or a complement to conventional thermal or chemical decontamination processes. This food preservation method involves the use of intense, short-duration pulses of broad-spectrum light. The germicidal effect appears to be due to both photochemical and photothermal effects. Several high intensity flashes of broad spectrum light pulsed per second can inactivate microbes rapidly and effectively. However, the efficacy of pulsed light may be limited by its low degree of penetration, as microorganisms are only inactivated on the surface of foods or in transparent media such as water. Examples of applications to foods are presented, including microbial inactivation and effects on food matrices. 相似文献
20.
Carotenoids and their derivatives are essential for growth, development, and signaling in plants and have an added benefit as nutraceuticals in food crops. Despite the importance of the biosynthetic pathway, there remain open questions regarding some of the later enzymes in the pathway. The CYP97 family of P450 enzymes was predicted to function in carotene ring hydroxylation, to convert provitamin A carotenes to non-provitamin A xanthophylls. However, substrate specificity was difficult to investigate directly in plants, which mask enzyme activities by a complex and dynamic metabolic network. To characterize the enzymes more directly, we amplified cDNAs from a model crop, Oryza sativa, and used functional complementation in Escherichia coli to test activity and specificity of members of Clans A and C. This heterologous system will be valuable for further study of enzyme interactions and substrate utilization needed to understand better the role of CYP97 hydroxylases in plant carotenoid biosynthesis. 相似文献