首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

2.
Glycoside hydrolases form hyperthermophilic archaea are interesting model systems for the study of catalysis at high temperatures and, at the moment, their detailed enzymological characterization is the only approach to define their role in vivo. Family 29 of glycoside hydrolases classification groups α-l-fucosidases involved in a variety of biological events in Bacteria and Eukarya. In Archaea the first α-l-fucosidase was identified in Sulfolobus solfataricus as interrupted gene expressed by programmed −1 frameshifting. In this review, we describe the identification of the catalytic residues of the archaeal enzyme, by means of the chemical rescue strategy. The intrinsic stability of the hyperthermophilic enzyme allowed the use of this method, which resulted of general applicability for β and α glycoside hydrolases. In addition, the presence in the active site of the archaeal enzyme of a triad of catalytic residues is a rather uncommon feature among the glycoside hydrolases and suggested that in family 29 slightly different catalytic machineries coexist.  相似文献   

3.
A glycosyl hydrolase family 54 (GH54) α-l-arabinofuranosidase gene (abfA) of Aureobasidium pullulans was amplified by polymerase chain reaction from genomic DNA and a 498-amino-acid open reading frame deduced from the DNA sequence. Modeling of the highly conserved A. pullulans AbfA protein sequence on the crystal structure of Aspergillus kawachii AkabfB showed that the catalytic amino acid arrangement and overall structure were highly similar including the N-terminal catalytic and C-terminal arabinose binding domains. The abfA gene was expressed in Saccharomyces cerevisiae, and the heterologous enzyme was purified. The protein was monomeric, migrating at 49 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and eluting at 36 kDa upon gel filtration. AbfA showed maximal activity at 55°C and between pH 3.5 and pH 4. The enzyme had a K m value for p-nitrophenyl-α-l-arabinofuranoside of 3.7 mM and a V max of 34.8 μmol min−1 mg protein−1. Arabinose acted as a noncompetitive inhibitor with a K i of 38.4 mM. The enzyme released arabinose from maize fiber, oat spelt arabinoxylan, and wheat arabinoxylan, but not from larch wood arabinogalactan or α-1,5-debranched arabinan. AbfA displayed low activity against α-1,5-l-arabino-oligosaccharides. The enzyme acted synergistically with endo-β-1,4-xylanase in the breakdown of wheat arabinoxylan. Binding of AbfA to xylan from several sources confirmed the presence of a functional carbohydrate-binding module. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Tao F  Luo Y  Huang Q  Liu Y  Li B  Zhang G 《Amino acids》2009,37(4):603-607
l-β-Haloalanines are physiologically active unnatural amino acids and they are useful intermediates for the synthesis of natural and unnatural amino acids, S-linked glycopeptides, and lanthionines. In general l-β-haloalanines were prepared predominantly from l-serine via functional group transformation. Here we reported an alternative approach for the preparation of l-β-haloalanines via halogenation of protected l-cysteine esters which was obtained from l-cysteine or l-cystine, respectively. The mercapto group of protected l-cysteine esters was efficiently transformed to halo groups by triphenylphosphine/N-halosuccinimides. It has been proved to be a versatile desulfurization strategy via this functional group transformation.  相似文献   

5.
Rhamnosidases are enzymes that catalyze the hydrolysis of terminal nonreducing L-rhamnose for the bioconversion of natural or synthetic rhamnosides. They are of great significance in the current biotechnological area, with applications in food and pharmaceutical industrial processes. In this study we isolated and characterized a novel alkaline rhamnosidase from Acrostalagmus luteo albus, an alkali-tolerant soil fungus from Argentina. We also present an efficient, simple, and inexpensive method for purifying the A. luteo albus rhamnosidase and describe the characteristics of the purified enzyme. In the presence of rhamnose as the sole carbon source, this fungus produces a rhamnosidase with a molecular weight of 109 kDa and a pI value of 4.6, as determined by SDS–PAGE and analytical isoelectric focusing, respectively. This enzyme was purified to homogeneity by chromatographic and electrophoretic techniques. Using p-nitrofenil-α-L-rhamnopiranoside as substrate, the enzyme activity showed pH and temperature optima of 8.0 and 55°C, respectively. The enzyme exhibited Michaelis–Menten kinetics, with K M and V max values of 3.38 mmol l−1 and 68.5 mmol l−1 min−1, respectively. Neither divalent cations such as Ca2+, Mg2+, Mn2+, and Co2+ nor reducing agents such as β-mercaptoethanol and dithiothreitol showed any effect on enzyme activity, whereas this activity was completely inhibited by Zn2+ at a concentration of 0.2 mM. This enzyme showed the capacity to hydrolyze some natural rhamnoglucosides such as hesperidin, naringin and quercitrin under alkaline conditions. Based on these results, and mainly due to the high activity of the A. luteo albus rhamnosidase under alkaline conditions, this enzyme should be considered a potential new biocatalyst for industrial applications.  相似文献   

6.
α-l-Rhamnosidase from Aspergillus terreus was covalently immobilized on the following ferromagnetic supports: polyethylene terephthalate (Dacron-hydrazide), polysiloxane/polyvinyl alcohol (POS/PVA), and chitosan. The powdered supports were magnetized by thermal coprecipitation method using ferric and ferrous chlorides, and the immobilization was carried out via glutaraldehyde. The activity of the Dacron-hydrazide (0.53 nkat/μg of protein) and POS/PVA (0.59 nkat/μg of protein) immobilized enzyme was significantly higher than that found for the chitosan derivative (0.06 nkat/μg of protein). The activity–pH and activity–temperature profiles for all immobilized enzymes did not show difference compared to the free enzyme, except the chitosan derivative that presented higher maximum temperature at 65 °C. The Dacron-hydrazide derivative thermal stability showed a similar behavior of the free enzyme in the temperature range of 40–70 °C. The POS/PVA and chitosan derivatives were stable up to 60 °C, but were completely inactivated at 70 °C. The activity of the preparations did not appreciably decrease after ten successive reuses. Apparent K m of α-l-rhamnosidase immobilized on magnetized Dacron-hydrazide (1.05 ± 0.22 mM), POS/PVA (0.57 ± 0.09 mM), and chitosan (1.78 ± 0.24 mM) were higher than that estimated for the soluble enzyme (0.30 ± 0.03 mM). The Dacron-hydrazide enzyme derivative showed better performance than the free enzyme to hydrolyze 0.3% narigin (91% and 73% after 1 h, respectively) and synthesize rhamnosides (0.116 and 0.014 mg narirutin after 1 h, respectively).  相似文献   

7.
8.
The gene encoding an α-l-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalytic residues with α-l-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. A histidine tag was introduced at the N-terminal end of AbfATK4, and the recombinant protein was expressed in Escherichia coli BL21, under control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme was purified by nickel affinity chromatography. The molecular mass of the native protein, as determined by gel filtration, was about 236 kDa, suggesting a homotetrameric structure. AbfATK4 was active at a broad pH range (pH 5.0–10.0) and at a broad temperature range (40–85°C), and it had an optimum pH of 6.0 and an optimum temperature of 75–80°C. The enzyme was more thermostable than previously described arabinofuranosidases and did not lose any activity after 48 h incubation at 70°C. The protein exhibited a high level of activity with p-nitrophenyl-α-l-arabinofuranoside, with apparent K m and V max values of 0.17 mM and 588.2 U/mg, respectively. AbfATK4 also exhibited a low level of activity with p-nitrophenyl-β-d-xylopyranoside, with apparent K m and V max values of 1.57 mM and 151.5 U/mg, respectively. AbfATK4 released l-arabinose only from arabinan and arabinooligosaccharides. No endoarabinanase activity was detected. These findings suggest that AbfATK4 is an exo-acting enzyme.  相似文献   

9.
A hyperthermostable glycoside hydrolase family 51 (GH51) α-l-arabinofuranosidase from Thermotoga petrophila RKU-1 (TpAraF) was cloned, overexpressed, purified and characterized. The recombinant enzyme had optimum activity at pH 6.0 and 70°C with linear α-1,5-linked arabinoheptaose as substrate. The substrate cleavage pattern monitored by capillary zone electrophoresis showed that TpAraF is a classical exo-acting enzyme producing arabinose as its end-product. Far-UV circular dichroism analysis displayed a typical spectrum of α/β barrel proteins analogously observed for other GH51 α-l-arabinofuranosidases. Moreover, TpAraF was crystallized in two crystalline forms, which can be used to determine its crystallographic structure.  相似文献   

10.
Streptomyces albulus NBRC14147 produces ɛ-poly-l-lysine (ɛ-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of ɛ-PL, limited information is available regarding its biosynthesis; the l-lysine molecule is directly utilized for ɛ-PL biosynthesis. In most bacteria, l-lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as l-lysine and/or l-threonine. S. albulus NBRC14147 can produce a large amount of ɛ-PL (1–3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient l-lysine for ɛ-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of l-lysine and l-threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in ɛ-PL productivity.  相似文献   

11.
Thermomonospora fusca produced a relatively high level of alpha-L-arabinofuranosidase when growing on oat spelt xylan as the main carbon and energy source. The enzyme exhibited maximum relative activity (0.136 U/g protein) at pH 9.0 with 54 and 55% activity remaining at pH of 4.5 and 11.0, respectively. The apparent Km value for the crude alpha-L-arabinofuranosidase preparation was 180 mumol/L 4-nitrophenyl alpha-L-arabinofuranoside; the upsilon lim value was the release of 40 mumol/L 4-nitrophenol per min. Enzyme activity was eluted as a single peak (HPLC gel filtration chromatography) corresponding to molar mass of approximately 92 kDa. Native electrophoresis of crude cell lysate confirmed the presence of a single active intracellular alpha-L-arabinofuranosidase component. SDS-PAGE of this enzyme, developed as zymogram, did not demonstrate any activity; denaturing gel was stained and a protein band of relative molar mass of 46 kDa was revealed. Isoelectric focusing of a purified alpha-L-arabinofuranosidase yielded a single protein band for the corresponding activity zone with pI 7.9. The enzyme was purified approximately 21-fold the mean overall yield was about 16%.  相似文献   

12.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

13.
Poly (β-l-malic acid) (PMLA) is a water-soluble polyester with many attractive properties in chemical industry and medicine development. However, the low titer of PMLA in the available producer strains limits further industrialization efforts and restricts its many potential applications. In order to solve this problem, a new strain with the distinguished high productivity of PMLA was isolated from fresh plants samples. It was characterized as the candidate of Aureobasidium pullulans based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences. After the optimization of culture conditions, the highest PMLA concentration (62.27 g l−1) could be achieved in the shake flask scale. In addition, the contribution of the carbon flux to exopolysaccharide (EPS) and PMLA could be regulated by the addition of CaCO3 in the medium. This high-level fermentation process was further scaled up in the 10 l benchtop fermentor with a high PMLA concentration (57.2 g l−1) and productivity (0.35 g l−1 h−1), which are the highest level in all the literature. Finally, the suitable acid hydrolysis conditions of PMLA were also investigated with regard to the production of l-malic acid, and the kinetics of PMLA acid hydrolysis was modeled to simulate the whole degradation process. The present work paved the road to produce this multifunctional biomaterial (PMLA) at industrial scale and promised one alternative method to produce l-malic acid in the future.  相似文献   

14.
β-N-Methylamino-l-alanine (BMAA), a non-proteinogenic amino acid, has been detected in a range of cyanobacteria, including terrestrial, aquatic, free living and endosymbiotic species. The widespread occurrence of cyanobacteria in the environment raises concerns regarding the ecological and toxicological impact of BMAA, and consequently, studies have focussed extensively on the toxicity and environmental impact of BMAA, while no research has addressed the ecophysiological or metabolic role of the compound in cyanobacteria. In this study, both the uptake of exogenous BMAA by and the effect of exogenous BMAA on the growth of Synechocystis PCC6803 were investigated. BMAA was rapidly taken up by the non-diazotrophic cyanobacterium Synechocystis PCC6803 in a concentration dependent manner. The presence of exogenous BMAA resulted in a substantial and concentration-dependent decrease in cell growth and the substantial loss of photosynthetic pigmentation. Similar effects were seen in the presence of the non-proteinogenic amino acid, 2,4-diaminobutyric acid but to a lesser degree than that of BMAA. The effects were reversed when light was decreased from 16 to 10 μmol m−2 s−1. Control cultures grown in the presence of l-arginine, l-asparagine, l-glutamate and glycine showed normal or slightly increased growth with no change in pigmentation. The decrease in growth rate coupled to bleaching indicates that BMAA may induce chlorosis in the presence of adequate photosynthetic radiation suggesting a connection between BMAA and the induction of conditions, such as nitrogen or sulphur depletion, that result in growth arrest and the induction of chlorosis.  相似文献   

15.
Flax seed mucilage (FM) contains a mixture of highly doubly substituted arabinoxylan as well as rhamnogalacturonan I with unusual side group substitutions. Treatment of FM with a GH11 Bacillus subtilis XynA endo 1,4-β-xylanase (BsX) gave limited formation of reducing ends but when BsX and FM were incubated together on different wheat arabinoxylan substrates and birchwood xylan, significant amounts of xylose were released. Moreover, arabinose was released from both water-extractable and water-unextractable wheat arabinoxylan. Since no xylose or arabinose was released by BsX addition alone on these substrates, nor without FM or BsX addition, the results indicate the presence of endogenous β-d-xylosidase and α-l-arabinofuranosidase activities in FM. FM also exhibited activity on both p-nitrophenyl α-l-arabinofuranoside (pNPA) and p-nitrophenyl β-d-xylopyranoside (pNPX). Based on K M values, the FM enzyme activities had a higher affinity for pNPX (K M 2 mM) than for pNPA (K M 20 mM).  相似文献   

16.
Molecular genetic analysis of melibiose-fermenting Saccharomyces strains isolated from fermentative processes and natural sources in different world regions was conducted to deduce the evolutionary diversity of Saccharomyces yeasts and find new α-galactosidase MEL genes. The species S. bayanus, S. mikatae, and S. paradoxus were shown to have a single copy of MEL and not accumulate polymeric genes, unlike some S. cerevisiae populations. The polymeric genes MELp1 and MELp2 were identified in S. paradoxus for the first time. Genes identical by 98.7% are located on the chromosomes X and VI, respectively. Phylogenetic analysis indicates that MEL genes of the Saccharomyces yeasts are species-specific.  相似文献   

17.
The mechanism preferentially regulating accumulation of raffinose family oligosaccharides (RFOs) or galactosyl cyclitols in legume seeds still remains unknown. The broad range of raffinose family oligosaccharides and galactosyl pinitols in the composition of seeds of Vicia genus gives researchers an exceptional opportunity for investigations on relationships in biosynthesis of both types of α-d-galactosides. Feeding explants of Vicia species radically different in the composition of RFOs and galactosyl pinitols with basic galactose acceptors, sucrose (for RFOs) or cyclitols (for galactosyl cyclitols) can be a helpful method for assessment of their regulatory role in accumulation of α-d-galactosides in seeds. Garden vetch (Vicia sativa L.) seeds, naturally accumulating RFOs, demonstrated an ability to take up and use exogenously applied d-pinitol and d-chiro-inositol for synthesis of their mono-, di- and tri-galactosides. Together with the accumulation of new galactosides, the concentration of RFOs decreased. In fine-leaved (Vicia tenuifolia Roth.) vetch seeds such a remarkably high concentration of galactosyl pinitols (GPs) was discovered that they nearly replaced RFOs, which is unique among legumes. If the accumulation of both types of galactosides is correlated with concentration of galactose acceptors, elevated levels of sucrose or myo-inositol should promote accumulation of RFOs, instead of GPs. Unexpectedly, feeding fine-leaved vetch raceme explants with myo-inositol or sucrose promoted accumulation of GPs, but not of RFOs. Our comparison of accumulation and biosynthesis of both types of galactosides (RFOs and GPs) throughout development and maturation of seeds from fine-leaved vetch has indicated that preferential accumulation of GPs is associated with the drying of seeds during maturation. Different patterns in activities of enzymes engaged in RFOs’ biosynthetic pathway and galactosyltransferases involved in biosynthesis of GPs indicated that distinct forms of enzymes can operate in both pathways. The feeding of explants with d-chiro-inositol causes accumulation of fagopyritols B1 in seeds of both Vicia species, which suggests presence of the same or a similar form of galactinol synthase. Accumulation of fagopyritols in fine-leaved vetch seeds did not affect accumulation of RFOs or galactosyl pinitols.  相似文献   

18.
An α-l-arabinofuranosidase produced by Pleurotus ostreatus (PoAbf) during solid state fermentation on tomato pomace was identified and the corresponding gene and cDNA were cloned and sequenced. Molecular analysis showed that the poabf gene carries 26 exons interrupted by 25 introns and has an open reading frame encoding a protein of 646 amino acid residues, including a signal peptide of 20 amino acid residues. The amino acid sequence similar to the other α-l-arabinofuranosidases indicated that the enzyme encoded by poabf can be classified as a family 51 glycoside hydrolase. Heterologous recombinant expression of PoAbf was carried out in the yeasts Pichia pastoris and Kluyveromyces lactis achieving the highest production level of the secreted enzyme (180 mg L−1) in the former host. rPoAbf produced in P. pastoris was purified and characterized. It is a glycosylated monomer with a molecular weight of 81,500 Da in denaturing conditions. Mass spectral analyses led to the localization of a single O-glycosylation site at the level of Ser160. The enzyme is highly specific for α-l-arabinofuranosyl linkages and when assayed with p-nitrophenyl α-l-arabinofuranoside it follows Michaelis–Menten kinetics with a K M of 0.64 mM and a k cat of 3,010 min−1. The optimum pH is 5 and the optimal temperature 40°C. It is worth noting that the enzyme shows a very high stability in a broad range of pH. The more durable activity showed by rPoAbf in comparison to the other α-l-arabinofuranosidases enhances its potential for biotechnological applications and increases interest in elucidating the molecular bases of its peculiar properties.  相似文献   

19.
Poly(ε-l-lysine) (ε-PL) is a naturally occurring poly(amino acid) characterized by a unique structure linking ε-amino and carboxyl groups of l-lysine. Due to its various functions and its biodegradability and non-toxicity, the ε-PL polymer has attracted increasing attention in recent years. ε-PL is frequently found in various strains of Streptomyces sp. This review gives an up-to-date overview regarding the biosynthesis of ε-PL focussing mainly on results obtained from ten newly isolated producer strains, using the two-stage culture method of cell growth and ε-PL production cultures. The production of nearly monodispersed ε-PL is covered together with the development of ε-PL specific hydrolases and the release of synthesized ε-PL into the culture broth. From these results, coupled with the termination of polymerization through nucleophilic chain transfer, the biosynthetic mechanism of the polymer is discussed.  相似文献   

20.
The α-l-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-l-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp252, Asp257, Asp264, Glu530, Arg548, His553, and Trp555) and may form the hydrophobic pocket in stabilizing donor (Trp261, Tyr302, Tyr316, and Trp369) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp257. Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号