首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete nucleotide sequence of the maize chlorotic mottle virus (MCMV) genome has been determined to be 4437 nucleotides. The viral genome has four long open reading frames (ORFs) which could encode polypeptides of 31.6, 50, 8.9 and 25.1 kd. If the termination codons, for the polypeptides encoded by the 50 and 8.9 kd ORFs are suppressed, readthrough products of 111 and 32.7 kd result. The 31.6 and 50 kd ORFs overlap for nearly the entire length of the 31.6 kd ORF. Striking amino acid homology has been observed between two potential polypeptides encoded by MCMV and polypeptides encoded by carnation mottle virus (CarMV) and turnip crinkle virus (TCV). The 25.1 kd ORF most likely encodes the capsid protein. The similar genome organization and amino acid sequence homology of MCMV with CarMV and TCV suggest an evolutionary relationship with these members of the carmovirus group.  相似文献   

2.
3.
Complete DNA sequence of the rat cytomegalovirus genome   总被引:7,自引:0,他引:7       下载免费PDF全文
We have determined the complete genome sequence of the Maastricht strain of rat cytomegalovirus (RCMV). The RCMV genome has a length of 229,896 bp and is arranged as a single unique sequence flanked by 504-bp terminal direct repeats. RCMV was found to have counterparts of all but one of the open reading frames (ORFs) that are conserved between murine CMV (MCMV) and human CMV (HCMV). Like HCMV, RCMV lacks homologs of the genes belonging to the MCMV m02 glycoprotein gene family. However, RCMV contains 15 ORFs with homology to members of the MCMV m145 glycoprotein gene family. Four ORFs are predicted to encode homologs of host proteins; R33 and R78 both putatively encode G protein-coupled receptors, whereas r144 and r131 encode homologs of major histocompatibility class I heavy chains and CC chemokines, respectively. An intriguing feature of the RCMV genome is the presence of an ORF, r127, with similarity to the rep gene of parvoviruses as well as ORF U94 of human herpesvirus 6A (HHV-6A) and HHV-6B. Counterparts of these ORFs have not been found in the other sequenced herpesviruses.  相似文献   

4.
M Price 《Journal of virology》1992,66(9):5658-5661
Nucleotide sequence analysis of potato virus X (PVX) genomic RNA predicts five open reading frames (ORFs). Previous analysis of total RNAs from PVX-infected leaf tissue suggested that six subgenomic RNAs are synthesized during infection. However, the proteins encoded by the genomic RNA, the subgenomic RNAs, or the predicted ORFs have not been identified in vivo. To characterize the coding properties of the viral RNA, particularly to determine whether the five predicted ORFs function in vivo, total protein extracts prepared from PVX-infected leaf tissue were analyzed by using antibodies raised against virus-specific synthetic peptides and against the virus capsid protein. Dot blot analyses showed that these antibodies reacted to PVX-infected extracts, indicating in vivo expression of the five predicted ORFs. In addition, Western blot (immunoblot) analysis of the extracts showed that ORF 1, 2, 3, and 4 peptide antisera and coat protein antiserum detect predominantly a single protein.  相似文献   

5.
The capsid of cytomegalovirus contains an abundant, low-molecular-weight protein whose coding sequence within the viral genome had not been identified. We have used a combination of biochemical and immunological techniques to demonstrate that this protein, called the smallest capsid protein in human cytomegalovirus, is encoded by a previously unidentified 225-bp open reading frame (ORF) located between ORFs UL48 and UL49. This short ORF, called UL48/49, is the positional homolog of herpes simplex virus ORF UL35 (encoding capsid protein VP26) and shows partial amino acid sequence identity to positional homologs in human herpes viruses 6 and 7.  相似文献   

6.
7.
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.  相似文献   

8.
9.
The genome of equine infectious anemia virus (EIAV) contains several small open reading frames (ORFs), the importance of which in the development of the virus is not clear. We investigated the possibility that the largest of these ORFs (ORF S3) is expressed during the course of the viral infection. The ORF S3 information was expressed in Escherichia coli, and the antigen was used to raise monospecific antiserum. A 20-kDa protein expressed in cells producing EIAV was identified as the gene product of ORF S3. Furthermore, sera from EIAV-infected animals specifically recognized this protein, indicating that the ORF S3 antigen is expressed in vivo as well. A model for the expression of this new viral antigen is presented. The proposed splicing pattern is similar to that of the VEP-1 protein of maedi-visna-virus, which tempts us to speculate that ORF S3 defines the second exon of the EIAV Rev protein.  相似文献   

10.
11.
Primary sequence patterns based on known conserved sites in eukaryotic protein kinases were used to search for eukaryotic-like protein kinase sequences in a six-frame translation of the bacterial subsection of GenBank. This search identified a previously unrecognized eukaryotic-like protein kinase gene in three related methanogenic archaebacteria, Methanococcus vannielii, M. voltae, and M. thermolithotrophicus. The proposed coding sequences are located in orthologous open reading frames (ORFs): ORF547, ORF294, and ORF114, respectively. The C-terminus of the ORFs contains 9 of the 11 subdomains characteristically conserved within the eukaryotic protein kinase catalytic domain. The N-terminus of the ORFs is similar to a putative glycoprotease in Pasteurella haemolytica and its homologue in Escherichia coli, the orfX gene. This is the first report of a eukaryotic-like protein kinase sequence observed in Archaebacteria.  相似文献   

12.
Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the "missing self." The retention, however, is counteracted by the m04 early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule D(d). Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1(168-176)), the early nonapeptide m04(243-251) is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.  相似文献   

13.
Murine CMV (MCMV), a beta-herpesvirus, infects dendritic cells (DC) and impairs their function. The underlying events are poorly described. In this study, we identify MCMV m138 as the viral gene responsible for promoting the rapid disappearance of the costimulatory molecule B7-1 (CD80) from the cell surface of DC. This was unexpected, as m138 was previously identified as fcr-1, a putative virus-encoded FcR. m138 impaired the ability of DC to activate CD8+ T cells. Biochemical analysis and immunocytochemistry showed that m138 targets B7-1 in the secretory pathway and reroutes it to lysosomal associated membrane glycoprotein-1+ compartments. These results show a novel function for m138 in MCMV infection and identify the first viral protein to target B7-1.  相似文献   

14.
Sequence and organization of barley yellow dwarf virus genomic RNA.   总被引:23,自引:5,他引:18       下载免费PDF全文
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined, except for the 5'-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3'6.7K ORF are likely to be expressed via subgenomic mRNAs.  相似文献   

15.
TT virus (TTV) is a newly discovered human virus with a single-stranded, circular DNA genome. The TTV DNA sequence includes two major open reading frames (ORFs), ORF1 and ORF2. Recently, spliced TTV mRNAs were detected and revealed two additional coding regions, ORF3 and ORF4. We found sequence similarity between the TTV ORF3 protein and hepatitis C virus (HCV) nonstructural 5A (NS5A) protein, which is a phosphoprotein and is thought to associate with various cellular proteins. To test whether the TTV ORF3 protein is phosphorylated, the state of phosphorylation was analyzed with a transient protein production system. The TTV ORF3 protein was phosphorylated at the serine residues in its C-terminal portion. Furthermore, the TTV ORF3 gene generated two forms of proteins with a different phosphorylation state, similar to the HCV NS5A region, suggesting that TTV ORF3 protein has function(s) similar to phosphorylated viral proteins such as the HCV NS5A protein.  相似文献   

16.
17.
18.
19.
To study trans-activation of gene expression by murine cytomegalovirus (MCMV) immediate-early (IE) proteins, the IE coding region 1 (ie1), which encodes the 89,000-Mr IE phosphoprotein (pp89), was stably introduced into L cells. A cell line was selected and characterized that efficiently expressed the authentic viral protein. The pp89 that was constitutively expressed in L cells stimulated the expression of transfected recombinant constructs containing the bacterial chloramphenicol acetyltransferase (CAT) gene under the control of viral promoters. The regulatory function of the ie1 product was confirmed by transient expression assays in which MCMV IE genes were cotransfected into L cells together with recombinant constructs of the CAT gene. For CAT activation by the ie1 product, a promoter region was required, but there was no preferential activation of a herpes simplex virus type 1 delayed-early promoter. All plasmid constructs that contained the intact coding sequences for pp89 induced gene expression in trans. The MCMV enhancer region was not essential for the expression of a functional IE gene product, and testing of the cis-regulatory activity of the MCMV enhancer revealed a low activity in L cells. Another region transcribed at IE times of infection, IE coding region 2, was unable to induce CAT expression and also did not augment the functional activity of ie1 after cotransfection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号