首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site of nitrogen fixation in the blue-green alga Anabaenacylindrica Lemra (Fogg strain) was investigated. Less than 4%of the total nitrogen fixed during a relatively short period(5-15 min) was recovered in heterocysts. When estimated on thecellular nitrogen basis, vegetative cells can fix molecularnitrogen at the same rate as do heterocysts. There was no positivecorrelation between nitrogen fixation and heterocyst formation.Results do not support the hypothesis that the heterocyst isthe main site for nitrogen fixation in blue-green algae. 1 This work was supported by grant (No. 38814) from the Ministryof Education. (Received July 23, 1971; )  相似文献   

2.
The effect of nitrate on nitrogen-fixation in the blue-greenalga Anabaena cylindrica Lemm (Fogg strain) was investigated.At concentrations up to 2x10–2 M, nitrate neither inhibitedthe activity of nitrogenase nor repressed its formation. Atthe late logarithmic phase, more than 50% of cell nitrogen wasprovided by nitrogen-fixation when the cells were grown in thepresence of nitrate. Ammonia at a concentration of 1x10–3M completely repressed the formation of nitrogenase, but hadno effect on its activity. Nitrogen-fixing activity in the algavaried to a considerable extent during growth on N2 and themaximum activity was attained at the middle logarithmic phase.However, atmospheric nitrogen did not directly affect the inductionof nitrogenase. The formation of nitrogenase in A. cylindricaappears to be controlled by the intracellular level of a certainnitrogenous metabolite. 1 This work was supported by grant No. 38814 from the Ministryof Education. (Received January 26, 1972; )  相似文献   

3.
4.
5.
Ammonia at concentrations above 1×10-5 M inhibits uptake of nitrate in the nitrogen-fixing blue-green alga, Anabaena cylindrica. This inhibition takes place both in the light and in the dark. The rate of nitrate uptake is stimulated by light. Addition of relatively high concentrations of nitrate (1–10 mM) reversibly inhibits ammonia uptake. FCCP, an uncoupler of phosphorylation, inhibits both nitrate and ammonia uptake. Ammonia may inhibit nitrate uptake by reducing the supply of energy (ATP) for active nitrate transport.Abbreviations FCCP carbonyl cyanide p-trifluoromethoxy-phenylhydrazone - CCCP carbonyl cyanide m-chlorophenyl-hydrazone  相似文献   

6.
Summary Short-term manometric experiments with bacteria-free cultures of Anabaena cylindrica showed that the close dependency of nitrogen fixation upon photosynthesis could be temporarily eliminated in nitrogen-starved cells. Initial rates of nitrogen uptake by these cells in the absence of carbon dioxide were equally rapid in the light and dark, decreasing and finally ceasing after two hours. Continued steady nitrogen uptake was only maintained for long periods in the presence of carbon dioxide in the light. In the dark, nitrogen uptake was accompanied by carbon dioxide evolution.More oxygen was evolved in the light by cells fixing nitrogen than by those incubated under argon. This additional oxygen evolution could be accounted for by extra carbon dioxide fixation in the presence of nitrogen.Of a number of organic compounds tested, only sodium pyruvate stimulated nitrogen fixation. This stimulation was achieved both in the light and dark and in the presence and absence of carbon dioxide, showing that the role of pyruvate was other than acting as a carbon skeleton.Three metabolic inhibitors, cyanide and chlorpromazine (chiefly respiratory) and phenylurethane (photosynthetic) differentially inhibited photosynthesis and nitrogen fixation. The latter inhibitor had a more marked effect on photosynthesis while the two chiefly respiratory inhibitors had a stronger effect on nitrogen fixation.  相似文献   

7.
The blue-green alga Anabaena cylindrica is found to consume molecular hydrogen in a hydrogenase dependent reaction. This hydrogen uptake proceeds in the dark and is strictly dependent on oxygen, thus representing a Knallgas reactions. Its rate is almost as high as that of the endogenous respiration in Anabaena. Studies with inhibitors reveal that hydrogen is utilized via the complete respiratory chain providing additional energy for the alga. CO plus C2H2 completely block the Knallgas reaction which explains the previously reported considerable increase in the total H2 formation representing the difference between the nitrogenase-dependent H2-evolution and the reutilization of the gas catalysed by the hydrogenase in intact Anabaena.H2 is able to support the C2H2-reduction in the dark in a reaction again strictly dependent on oxygen. Moreover, H2 is also consumed in experiments carried out under far red light and in the presence of dichlorophenyl-dimenthyl-urea (DCMU) where the energy for nitrogen fixation is no longer provided by respiration but by cyclic photophosphorylation. Under these conditions, H2 is found to supply electrons for the formation of C2H4 from C2H2 in a reaction no longer dependent on the presence of oxygen. Moreover, in these experiments, the presence of H2 stabilizes the C2H2-reduction activity against the deleterious effect of oxygen.Thus, this communication provides evidence for a triplicate function of the H2-uptake catalysed by hydrogenase in intact Anabaena which is (a) to provide energy by the Knallgas reaction, (b) to supply reducing equivalents for nitrogenase, (c) to protect nitrogenase from damage by oxygen.Abbreviations DCMU N-(3,4-dichlorophenyl)N,N-dimethylurea - DNP 2-4-dinitrophenol - FCCP carbonylcyanid-p-trifluormethoxyphenyl-hydrazone(=p-CF3-CCP) - Chl chlorophyll  相似文献   

8.
9.
Nitrate reductase was solubilized and purified from Anabaenacylindrica by Triton X-100 treatment of particulate preparationsfollowed by adsorption on calcium phosphate gel. Reduced methylviologen, FAD or FMN, but not ferredoxin, served as an effectiveelectron donor for the nitrate reduction by solubilized nitratereductase. 1This work was supported by a grant (4061) from the Ministryof Education (Received June 25, 1970; )  相似文献   

10.
Summary The requirements for activity of blue-green algal nitrogenase have been studied. The optimal concentration ranges for ATP and Na2S2O4 are 2-3 mM and 4-10 mM respectively. A magnesium requirement has been confirmed but the enzyme is not specific for Mg2+, Co2+ and Mn2+ will also support activity but Ca2+, Cu2+ and Zn2+ will not. The partially purified enzyme is soluble and specific activities of 50–100 nmoles C2H4/mg protein/min have been obtained. The biochemical characteristics of the enzyme, as determined in studies using enzyme inhibitors, are similar to those of bacterial and legume nitrogenases in that the enzyme is a metallo-protein containing iron and reduced thiol groups and the redox capacity of the enzyme involves a possible valency change in the iron. The transfer of electrons from H2 via a bacterial hydrogenase has been shown to be mediated, at least in part, by ferredoxin. The role of ferredoxin and the interrelationships between photosynthesis, reductant pool and hydrogen metabolism are discussed in the light of recent results obtained by ourselves and other workers.  相似文献   

11.
1. Superoxide dismutase activity was present in the heterocysts and vegetative cells of Anabaena cylindrica, but was always lower in the heterocysts. 2. No qualitative differences were found in the superoxide dismutase from the two cellular types. 3. Catalase activity was also present in both cellular types. 4. Most of the NADP reductase activity, as assayed with menadione or ferredoxin as electron acceptor, was localized within the heterocysts. 5. Studies on H2 consumption showed that most of the hydrogenase activity was associated with the heterocysts. 6. The results are discussed in terms of the postulate that superoxide dismutase and catalase are involved in the protection of the proton-donating systems participating in N2 fixation and H2 metabolism of heterocysts.  相似文献   

12.
Anabaena cylindrica grown in steady state continuous culture has an extractable ATP pool, measured on the basis of the luciferin-luciferase assay of 165±35 nmoles ATP mg chla -1. This pool is maintained by a dynamic balance between the rate of ATP synthesis and the rate of ATP utilization. Phosphorylating mechanisms which can maintain the pool in the short term are total photophosphorylation, cyclic photophosphorylation and oxidative phosphorylation. The alga can maintain its ATP pool by switching rapidly from one of these phosphorylating mechanisms to another depending on the environmental conditions. At each switch-over there is a transient drop in the ATP pool for a few seconds. On switching to conditions where only substrate level phosphorylation operates, the ATP pool falls immediately, but takes several hours to recover. The apparent rates of ATP synthesis by total photophosphorylation and by cyclic photophosphorylation are both much higher (210±30 and 250±13 moles ATP mg chla -1 h-1 respectively) than the apparent rate of ATP synthesis by oxidative phosphorylation (22±3 moles ATP mg chla -1 h-1). In long term experiments the ATP pool is maintained when total photophosphorylation is operating. It cannot be maintained in the long term by cyclic photophosphorylation alone in the absence of photosystem II activity or endogenous carbon compounds, or by oxidative phosphorylation in the absence of endogenous carbon compounds. Measurements of ATP, ADP and AMP show that the total pool of adenylates is similar in the light and in the dark in the short term. There is only limited production of ATP under dark anaerobic conditions when glycolysis and substrate phosphorylation can operate which suggests that these processes are of limited significance in providing ATP in Anabaena cylindrica.Abbreviations ADP adenosine 5-diphosphate - AMP adenosine 5-monophosphate - ATP adenosine 5-triphosphate - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)1,1-dimethyl urea - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PEP phosphoenolpyruvate  相似文献   

13.
14.
Hans W. Paerl 《Oecologia》1979,38(3):275-290
Summary In the bloom-forming filamentous blue-green algae Anabaena, both carbon dioxide and nitrogen fixation share a dependence on light. During daylight, A. reduces direct competition between these processes for light-generated reductant by optimizing carbon fixation during late morning hours while optimizing nitrogen fixation during afternoon hours.Sequential optimization was examined from both biochemical and ecological perspectives. Biochemically, it is sound to optimize carbon prior to nitrogen fixation, due to the higher sensitivity of the former to afternoon increases in dissolved oxygen levels which commonly occur in blooms. It is also advantageous to first assure adequate supplies of fixed carbon prior to incorporating fixed nitrogen. Ecologically, the sequence represents optimal use of radiant energy. A. is able to shift energy flow from a highly inhibited to a less inhibited process, thereby maintaining a sink for photo-generated reductant. Both A. and a non-nitrogen fixing diatom community show similar carbon fixation efficiencies during morning and midday hours. During afternoon however, A. diverts significant portions of photo-reductant from carbon to nitrogen fixation. This allows A. to optimize carbon fixation while maintaining access to nitrogen during periods of ambient nitrogen shortage. Accordingly, A. blooms usually appear during summer months when both nitrogen starvation and photosynthetically-active radiation inputs are maximal.  相似文献   

15.
An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5'-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.  相似文献   

16.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

17.
Photostimulation of nitrogen fixation in Anabaena cylindrica   总被引:5,自引:0,他引:5  
  相似文献   

18.
19.
G. A. Codd  W. D. P. Stewart 《Planta》1976,130(3):323-326
Summary The ribulose 1,5-diphosphate carboxylase (RUDP Case E.C. 4.1.1.39) activity of late log phase Anabaena cylindrica Lemm. was measured in vitro in fractions obtained by sucrose density gradient centrifugation. Two peaks of enzymic activity were obtained. One, accounting for about 80% of the total measurable activity occurred at the top of the gradient and appeared to be soluble activity; the second showed maximum activity in the 55% (w/w) sucrose fraction and represented 20% of the total activity. When the distribution of RUDP Case was assayed by immunoprecipitation using antiserum to RUDP Case from Euglena gracilis, the corresponding values were 59% and 41%. Electron microscopy of the various fractions showed that polyhedral bodies, which are sites of RUDP Case activity in other autotrophic prokaryotes, were also most abundant in the 55% (w/w) sucrose fraction.  相似文献   

20.
When extracts of Anabaena cylindrica are prepared in the absence of dithionite, they catalyze pyruvate-dependent acetylene reduction, a reaction not observable in assays containing dithionite. Ferredoxin and coenzyme-A, but not NADP and ferredoxin-NADP reductase, are required for maximal pyruvate-dependent activity. These acetylene-reducing extracts do not exhibit NADP-pyruvate dehydrogenase activity. However, pyruvate:ferredoxin oxidoreductase is present at levels of activity sufficient to support the in vitro rate of pyruvate-supported acetylene reduction. These in vitro data support earlier in vivo evidence that pyruvate:ferredoxin oxidoreductase transfers electrons from pyruvate to nitrogenase in A. cylindrica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号