首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA damage induction of ribonucleotide reductase.   总被引:16,自引:6,他引:10       下载免费PDF全文
  相似文献   

3.
Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2-Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the redistribution of the Rnr2-Rnr4 heterodimer to the cytoplasm, where it assembles as an active RNR complex and increases deoxyribonucleoside triphosphate levels. When iron is scarce, yeast selectively optimizes RNR function at the expense of other non-essential iron-dependent processes that are repressed, to allow DNA synthesis and repair.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
For repair of damaged DNA, cells increase de novo synthesis of deoxyribonucleotide triphosphates through the rate-limiting, p53-regulated ribonucleotide reductase (RNR) enzyme. In this study we investigated whether pharmacological inhibition of RNR by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) enhanced chemoradiation sensitivity through a mechanism involving sustained DNA damage. RNR inactivation by 3-AP and resulting chemoradiosensitization were evaluated in human cervical (CaSki, C33-a) cancer cells through study of DNA damage (γ-H2AX signal) by flow cytometry, RNR subunit p53R2 and p21 protein steady-state levels by Western blot analysis and laser scanning imaging cytometry, and cell survival by colony formation assays. 3-AP treatment led to sustained radiation- and cisplatin-induced DNA damage (i.e. increased γ-H2AX signal) in both cell lines through a mechanism of inhibited RNR activity. Radiation, cisplatin and 3-AP exposure resulted in significantly elevated numbers and persistence of γ-H2AX foci that were associated with reduced clonogenic survival. DNA damage was associated with a rise in p53R2 but not p21 protein levels 6 h after treatment with radiation and/or cisplatin plus 3-AP. We conclude that blockage of RNR activity by 3-AP impairs DNA damage responses that rely on deoxyribonucleotide production and thereby may substantially increase chemoradiosensitivity of human cervical cancers.  相似文献   

16.
17.
18.
19.
The ribonucleotide reductase system in Saccharomyces cerevisiae includes four genes (RNR1 and RNR3 encoding the large subunit and RNR2 and RNR4 encoding the small subunit). RNR3 expression, nearly undetectable during normal growth, is strongly induced by DNA damage. Yet an rnr3 null mutant has no obvious phenotype even under DNA damaging conditions, and the contribution of RNR3 to ribonucleotide reduction is not clear. To investigate the role of RNR3 we expressed and characterized the Rnr3 protein. The in vitro activity of Rnr3 was less than 1% of the Rnr1 activity. However, a strong synergism between Rnr3 and Rnr1 was observed, most clearly demonstrated in experiments with the catalytically inactive Rnr1-C428A mutant, which increased the endogenous activity of Rnr3 by at least 10-fold. In vivo, the levels of Rnr3 after DNA damage never reached more than one-tenth of the Rnr1 levels. We propose that heterodimerization of Rnr3 with Rnr1 facilitates the recruitment of Rnr3 to the ribonucleotide reductase holoenzyme, which may be important when Rnr1 is limiting for dNTP production. In complex with inactive Rnr1-C428A, the activity of Rnr3 is controlled by effector binding to Rnr1-C428A. This result indicates cross-talk between the Rnr1 and Rnr3 polypeptides of the large subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号