首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA sequence of the tryptophan synthase genes of Pseudomonas putida   总被引:6,自引:0,他引:6  
I P Crawford  L Eberly 《Biochimie》1989,71(4):521-531
Genes encoding the 2 subunits of tryptophan synthase in Pseudomonas putida have been identified and cloned by their similarity to the corresponding genes in Pseudomonas aeruginosa. The deduced amino acid sequences were confirmed by comparison with regions ascertained earlier by protein sequencing. The Pseudomonas amino acid sequences are 85% identical for the beta subunit and 70% identical for the alpha subunit. These sequences are compared to those of Salmonella typhimurium, where the structure is known from X-ray crystallography. Although amino acid conservation drops to 54% and 36% for the beta and alpha subunits, only 3 single residue gaps are required to maintain alignment throughout and most of the residues identified as important for catalysis or cofactor binding are conserved. The 23 residues surrounding the beta chain lysine that enters into a Schiff base linkage with the pyridoxal phosphate cofactor are compared in 13 species, including representatives from the eukaryotic and both prokaryotic kingdoms; appreciable conservation is apparent. The approximately 100 base pairs separating the trpB gene from its divergently transcribed activator gene are similar in the 2 pseudomonads, but do not resemble those of any other bacterium or fungus studied to date.  相似文献   

2.
We have isolated essentially full-length cDNA clones for human ferritin H and L chains from a human liver cDNA library. This allows the first comparison of H and L nucleotide and amino acid sequences from the same species as well as ferritin L cDNA sequences from different species. We conclude that human H and L ferritins are related proteins which diverged about the time of evolution of birds and mammals. We also deduce the secondary structure of the H and L subunits and compare this with the known structure of horse spleen ferritin. We find that residues involved in subunit interaction in shell assembly are highly conserved in H and L sequences. However, we find several interesting differences in H subunits at the amino acid residues involved in iron transport and deposition. These substitutions could account for known differences in the uptake, storage, and release of iron from isoferritins of different subunit composition.  相似文献   

3.
A cDNA for pea glutathione reductase has been cloned and sequenced. The derived amino acid sequence of 562 residues shows a high degree of homology to the previously published GR sequences from human erythrocytes and from two prokaryotes: Escherichia coli and Pseudomonas aeruginosa. The pea enzyme differs from other GRs in having an N-terminal leader sequence of about 60-70 residues which may be a chloroplast transit peptide and a 20 amino acid C-terminal extension of unknown function.  相似文献   

4.
K Inatomi 《DNA research》1998,5(6):365-371
The structural gene, nosZ, for the monomeric N2O reductase has been cloned and sequenced from the denitrifying bacterium Achromobacter cycloclastes. The nosZ gene encodes a protein of 642 amino acid residues and the deduced amino acid sequence showed homology to the previously derived sequences for the dimeric N2O reductases. The relevant DNA region of about 3.6 kbp was also sequenced and found to consist of four genes, nosDFYL based on the similarity with the N2O reduction genes of Pseudomonas stutzeri. The gene product of A. cycloclastes nosF (299 amino acid residues) has a consensus ATP-binding sequence, and the nos Y gene encodes a hydrophobic protein (273 residues) with five transmembrane segments, suggesting the similarity with an ATP-binding cassette (ABC) transporter which has two distinct domains of a highly hydrophobic region and ATP-binding sites. The nosL gene encodes a protein of 193 amino acid residues and the derived sequence showed a consensus sequence of lipoprotein modification/processing site. The expression of nosZ gene in Escherichia coli cells and the comparison of the translated sequences of the nosDFYL genes with those of bacterial transport genes for inorganic ions are discussed.  相似文献   

5.
gamma-Carboxymuconolactone decarboxylase (EC 4.1.1.44) from Azotobacter vinelandii resembled the isofunctional enzymes from Acinetobacter calcoaceticus and Pseudomonas putida. All three decarboxylases appeared to be hexamers formed by association of identical subunits of about 13,300 daltons. The A. vinelandii and P. putida decarboxylases cross-reacted immunologically with each other, and the NH2-terminal amino acid sequences of the enzymes differed in no more than 7 of the first 36 residues. In contrast, the A. calcoaceticus decarboxylase did not cross-react with the decarboxylase from A. vinelandii or P. putida; the NH2-terminal amino acid sequences of these enzymes diverged about 50% from the NH2-terminal amino acid sequence of the A. calcoaceticus decarboxylase.  相似文献   

6.
Alignment of the amino acid sequences of the Pseudomonas ovalis and Photobacterium leiognathi iron-superoxide dismutases (Fe-SODs) with the known sequences of the manganese-superoxide dismutases (Mn-SODs) shows that both types of SOD are highly homologous (33-53% identity) and share residues for the metal coordination. The amino acid residues that form the environment of the metal ions appear to be also conserved between the Fe- and Mn-SODs, except that the Phe-84 and Gln-154 in the Mn-SODs are replaced by Tyr and Ala, respectively, in the Fe-enzymes. Since this latter residue contributes to formation of the hydrophobic metal-ligand environment through hydrogen bonding with Trp-133 and Tyr-34 in the Mn-SODs, its substitution by Ala should cause different micro environments between the metal centers of the Fe- and Mn-SODs. This difference may account for the metal specificity of both types of SODs demonstrated by previous reconstitution experiments.  相似文献   

7.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.  相似文献   

8.
Amino acid sequence of the nonsecretory ribonuclease of human urine   总被引:7,自引:0,他引:7  
The amino acid sequence of a nonsecretory ribonuclease isolated from human urine was determined except for the identity of the residue at position 7. Sequence information indicates that the ribonucleases of human liver and spleen and an eosinophil-derived neurotoxin are identical or very closely related gene products. The sequence is identical at about 30% of the amino acid positions with those of all of the secreted mammalian ribonucleases for which information is available. Identical residues include active-site residues histidine-12, histidine-119, and lysine-41, other residues known to be important for substrate binding and catalytic activity, and all eight half-cystine residues common to these enzymes. Major differences include a deletion of six residues in the (so-called) S-peptide loop, insertions of two, and nine residues, respectively, in three other external loops of the molecule, and an addition of three residues at the amino terminus. The sequence shows the human nonsecretory ribonuclease to belong to the same ribonuclease superfamily as the mammalian secretory ribonucleases, turtle pancreatic ribonuclease, and human angiogenin. Sequence data suggest that a gene duplication occurred in an ancient vertebrate ancestor; one branch led to the nonsecretory ribonuclease, while the other branch led to a second duplication, with one line leading to the secretory ribonucleases (in mammals) and the second line leading to pancreatic ribonuclease in turtle and an angiogenic factor in mammals (human angiogenin). The nonsecretory ribonuclease has five short carbohydrate chains attached via asparagine residues at the surface of the molecule; these chains may have been shortened by exoglycosidase action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The nucleotide sequences of mRNAs for the mouse mitochondrial and cytosolic aspartate aminotransferase isoenzymes (mAspAT and cAspAT) (EC 2.6.1.1) were determined from complementary DNAs. The mAspAT mRNA comprises minimally 2460 nucleotides and codes for a polypeptide of 430 amino acid residues corresponding to the precursor form of the mAspAT (pre-mAspAT). The cAspAT mRNA comprises minimally 2086 nucleotides and codes for a polypeptide of 413 amino acid residues. The region coding for the mature mAspAT and that for the cAspAT show about 53% overall homology. The former shares 49% and the latter 48% of homology, respectively, with that of the Escherichia coli aspC gene, which has been shown to code for the E. coli AspAT (Kuramitsu, S., Okuno, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 1259-1262). When the deduced amino acid sequence of the mouse pre-mAspAT was compared with that of the pig pre-mAspAT polypeptide, we found that they share a 94% homology and that the mouse pre-mAspAT yields a presequence consisting of 29 amino acid residues and a mature mAspAT, consisting of 401 amino acid residues. These numbers and the amino acid residues present at the putative cleavage site are all in complete agreement in these two species. The deduced amino acid sequence of the mouse cAspAT shares 91% homology with that of the pig cAspAT. Comparisons of the nucleotide and deduced amino acid sequences between the mouse and E. coli AspATs suggest that the mammalian mAspAT gene is more closely related to the E. coli aspC gene than is the mammalian cAspAT gene.  相似文献   

10.
The Protein Identification Resource (PIR) protein sequence data bank was searched for sequence similarity between known proteins and human DNA polymerase beta (Pol beta) or human terminal deoxynucleotidyltransferase (TdT). Pol beta and TdT were found to exhibit amino acid sequence similarity only with each other and not with any other of the 4750 entries in release 12.0 of the PIR data bank. Optimal amino acid sequence alignment of the entire 39-kDa Pol beta polypeptide with the C-terminal two thirds of TdT revealed 24% identical aa residues and 21% conservative aa substitutions. The Monte Carlo score of 12.6 for the entire aligned sequences indicates highly significant aa sequence homology. The hydropathicity profiles of the aligned aa sequences were remarkably similar throughout, suggesting structural similarity of the polypeptides. The most significant regions of homology are aa residues 39-224 and 311-333 of Pol beta vs. aa residues 191-374 and 484-506 of TdT. In addition, weaker homology was seen between a large portion of the 'nonessential' N-terminal end of TdT (aa residues 33-130) and the first region of strong homology between the two proteins (aa residues 31-128 of Pol beta and aa residues 183-280 of TdT), suggestive of genetic duplication within the ancestral gene. On the basis of nucleotide differences between conserved regions of Pol beta and TdT genes (aligned according to optimally aligned aa sequences) it was estimated that Pol beta and TdT diverged on the order of 250 million years ago, corresponding roughly to a time before radiation of mammals and birds.  相似文献   

11.
1. Partial amino acid sequences for several sockeye salmon hemoglobin beta-chains have been determined and compared to several other fish beta-chain sequences. 2. A 90% homology exists between the sockeye cathodal (C1) beta-chain and the trout Hb I beta-chain for residues 1-19. 3. The sockeye salmon anodal (A1-3) beta-chain is virtually identical to the trout HB IV beta-chain for the first 55 amino acid residues. 4. The alpha-chains of the sockeye salmon appear to be acetylated at the N-terminal position and about 0.6% of the sockeye hemoglobin is glycosylated.  相似文献   

12.
13.
The primary structure of bovine skeletal muscle acylphosphatase was determined by performing the sequence analyses of the complete series of tryptic peptides. The amino acid composition of the entire series of peptic peptides was used to reconstruct the sequence by the overlapping method. The proposed structure is further confirmed by analogy with known amino acid sequences of acylphosphatase from skeletal muscle of other vertebrate species. The length of the polypeptide chain is 98 residues, identical to the length of the enzymes from other known mammalian species, but different from that found in turkey. The enzyme is NH2-acetylated and a comparison with the analogous molecular forms from other vertebrate species indicates that there are several long polypeptide stretches strictly conserved (93-97% identical position among mammals, and about 80% between calf and turkey enzymes).  相似文献   

14.
Cytochrome c-551 was prepared from nine different strains of Pseudomonas aeruginosa and six of Pseudomonas fluorescens biotype C, and their amino acid sequences were compared with the sequences previously determined for the cytochromes of type strains of each species. The standard of sequence examination was such that all single amino acid substitutions, delections or insertions ought to have been detected. Balanced double changes in sites in the same part of the sequence might have escaped detection. The standard of some of the quantitative amino acid analyses was not as high as would be required for the investigation of completely unknown sequences. Eight of the Ps. aeruginosa sequences could not be distinguished from the type sequence, whereas the ninth had a single amino acid substitution. The sequences from Ps. fluorescens biotype C were more varied, differing in from zero to four substitutions from the type sequence, with the most diverse sequences differing in seven positions. The results for Ps. aeruginosa are interpreted as evidence that neutral mutations are not responsible for much molecular evolution. The superficially paradoxical differences in the results for the two species are discussed.  相似文献   

15.
16.
S Kimura  M Ikeda-Saito 《Proteins》1988,3(2):113-120
Human myeloperoxidase and human thyroid peroxidase nucleotide and amino acid sequences were compared. The global similarities of the nucleotide and amino acid sequences are 46% and 44%, respectively. These similarities are most evident within the coding sequence, especially that encoding the myeloperoxidase functional subunits. These results clearly indicate that myeloperoxidase and thyroid peroxidase are members of the same gene family and diverged from a common ancestral gene. The residues at 416 in myeloperoxidase and 407 in thyroid peroxidase were estimated as possible candidates for the proximal histidine residues that link to the iron centers of the enzymes. The primary structures around these histidine residues were compared with those of other known peroxidases. The similarity in this region between the two animal peroxidases (amino acid 396-418 in thyroid peroxidase and 405-427 in myeloperoxidase) is 74%; however, those between the animal peroxidases and other yeast and plant peroxidases are not significantly high, although several conserved features have been observed. The possible location of the distal histidine residues in myeloperoxidase and thyroid peroxidase amino acid sequences are also discussed.  相似文献   

17.
We have developed a statistical method named MAP (mutagenesis assistant program) to equip protein engineers with a tool to develop promising directed evolution strategies by comparing 19 mutagenesis methods. Instead of conventional transition/transversion bias indicators as benchmarks for comparison, we propose to use three indicators based on the subset of amino acid substitutions generated on the protein level: (1) protein structure indicator; (2) amino acid diversity indicator with a codon diversity coefficient; and (3) chemical diversity indicator. A MAP analysis for a single nucleotide substitution was performed for four genes: (1) heme domain of cytochrome P450 BM-3 from Bacillus megaterium (EC 1.14.14.1); (2) glucose oxidase from Aspergillus niger (EC 1.1.3.4); (3) arylesterase from Pseudomonas fluorescens (EC 3.1.1.2); and (4) alcohol dehydrogenase from Saccharomyces cerevisiae (EC 1.1.1.1). Based on the MAP analysis of these four genes, 19 mutagenesis methods have been evaluated and criteria for an ideal mutagenesis method have been proposed. The statistical analysis showed that existing gene mutagenesis methods are limited and highly biased. An average amino acid substitution per residue of only 3.15-7.4 can be achieved with current random mutagenesis methods. For the four investigated gene sequences, an average fraction of amino acid substitutions of 0.5-7% results in stop codons and 4.5-23.9% in glycine or proline residues. An average fraction of 16.2-44.2% of the amino acid substitutions are preserved, and 45.6% (epPCR method) are chemically different. The diversity remains low even when applying a non-biased method: an average of seven amino acid substitutions per residue, 2.9-4.7% stop codons, 11.1-16% glycine/proline residues, 21-25.8% preserved amino acids, and 55.5% are amino acids with chemically different side-chains. Statistical information for each mutagenesis method can further be used to investigate the mutational spectra in protein regions regarded as important for the property of interest.  相似文献   

18.
The amino acid sequences of most of the CH1, CH2 and CH3 domains of IgG Zie, a myeloma protein belonging to the IgG2 subclass, are presented. These data make possible a comparison of the sequences of residues 253-446 of all four subclasses of immunoglobulins: these residues make up almost the entire Fc regions. A comparison can also be made of the CH1 domain of IgG1 Eu and the CH1 domain of IgG2 Zie. Earlier sequence analyses of the Fc regions of subclass 1 and 3 proteins, and parts of the Fc regions of subclass 2 and 4 proteins showed that about 95% of these sequences were identical. The extended comparisons made possible by the data presented here show that this very high degree of identity is maintained throughout the four subclasses. Similarly, the CH1 domains of gamma 1 and gamma 2 chains were found to have about 93% sequence identity. It is unlikely that the few single amino acid changes within the constant region domains can account for the marked differences between subclasses observed in the region domains can account for the marked differences between subclasses observed in the biological effector functions of immunoglobulin Fc regions, especially since most of the changes are highly conservative. Rather, it seems probable that these functional differences are caused by conformational differences between the subgroups, which result from sequence differences in the hinge regions.  相似文献   

19.
The primary structure of bovine liver UDP-glucose dehydrogenase (UDPGDH), a hexameric, NAD(+)-linked enzyme, has been determined at the protein level. The 52-kDa subunits are composed of 468 amino acid residues, with a free N-terminus and a Ser/Asn microhetergeneity at one position. The sequence shares 29.6% positional identity with GDP-mannose dehydrogenase from Pseudomonas, confirming a similarity earlier noted between active site peptides. This degree of similarity is comparable to the 31.1% identity vs. the UDPGDH from type A Streptococcus. Database searching also revealed similarities to a hypothetical sequence from Salmonella typhimurium and to "UDP-N-acetyl-mannosaminuronic acid dehydrogenase" from Escherichia coli. Pairwise identities between bovine UDPGDH and each of these sequences were all in the range of approximately 26-34%. Multiple alignment of all 5 sequences indicates common ancestry for these 4-electron-transferring enzymes. There are 27 strictly conserved residues, including a cysteine residue at position 275, earlier identified by chemical modification as the expected catalytic residue of the second half-reaction (conversion of UDP-aldehydoglucose to UDP-glucuronic acid), and 2 lysine residues, at positions 219 and 338, one of which may be the expected catalytic residue for the first half-reaction (conversion of UDP-glucose to UDP-aldehydoglucose). A GXGXXG pattern characteristic of the coenzyme-binding fold is found at positions 11-16, close to the N-terminus as with "short-chain" alcohol dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (376 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparisons establish that chicken MT shares extensive homology with mammalian MTs, but is more closely related to the MT-II than to the MT-I isoforms from various mammals. The nucleotide sequence of the coding region of chicken MT shares approximately 70% homology with the consensus sequence for the mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd2+, Zn2+, Cu2+), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号