首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three tyrosyl gallate derivatives (1-3) with variable hydroxyl substituent at the aromatic ring of tyrosol were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. Among three tyrosyl gallate derivatives, 4-hydroxyphenethyl 3,4,5-trihydroxybenote (1) (IC(50)=4.93 microM), 3-hydroxyphenethyl 3,4,5-trihydroxybenote (2) (IC(50)=15.21 microM), and 2-hydroxyphenethyl 3,4,5-trihydroxybenote (3) (IC(50)=14.50 microM) exhibited significant inhibitory effect on tyrosinase activity. Compound 1 was the most active compound, though it did not show the inhibitory effect on melanin formation in melan-a cells. However, compounds 2 (IC(50)=8.94 microM) and 3 (IC(50)=13.67 microM) significantly suppressed the cellular melanin formation without cytotoxicity. This study shows that the position of hydroxyl substituent at the aromatic ring of tyrosol plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

2.
Xanthine oxidase (XO) is a key enzyme which can catalyze xanthine to uric acid causing hyperuricemia in humans. By using the fractionation technique and inhibitory activity assay, an active compound that prevents XO from reacting with xanthine was isolated from wheat leaf. It was identified by the Mass and NMR as 6-aminopurine (adenine). A structure-activity study based on 6-aminopurine was conducted. The inhibition of XO activity by 6-aminopurine (IC(50)=10.89+/-0.13 microM) and its analogues was compared with that by allopurinol (IC(50)=7.82+/-0.12 microM). Among these analogues, 2-chloro-6(methylamino)purine (IC(50)=10.19+/-0.10 microM) and 4-aminopyrazolo[3,4-d] pyrimidine (IC(50)=30.26+/-0.23 microM) were found to be potent inhibitors of XO. Kinetics study showed that 2-chloro-6(methylamino)purine is non-competitive, while 4-aminopyrazolo[3,4-d]pyrimidine is competitive against XO.  相似文献   

3.
A general strategy for the synthesis of 3'-prenylated chalcones was established and a series of prenylated hydroxychalcones, including the hop (Humulus lupulus L.) secondary metabolites xanthohumol (1), desmethylxanthohumol (2), xanthogalenol (3), and 4-methylxanthohumol (4) were synthesized. The influence of the A-ring hydroxylation pattern on the cytotoxic activity of the prenylated chalcones was investigated in a HeLa cell line and revealed that non-natural prenylated chalcones, like 2',3,4',5-tetrahydroxy-6'-methoxy-3'-prenylchalcone (9, IC(50) 3.2+/-0.4microM) as well as the phase 1 metabolite of xanthohumol (1), 3-hydroxyxanthohumol (8, IC(50) 2.5+/-0.5microM), were more active in comparison to 1 (IC(50) 9.4+/-1.4microM). A comparison of the cytotoxic activity of xanthohumol (1) and 3-hydroxyxanthohumol (8) with the non-prenylated analogs helichrysetin (12, IC(50) 5.2+/-0.8) and 3-hydroxyhelichrysetin (13, IC(50) 14.8+/-2.1) showed that the prenyl side chain at C-3' has an influence on the cytotoxicity against HeLa cells only for the dihydroxylated derivative. This offers interesting synthetic possibilities for the development of more potent compounds. The ORAC activity of the synthesized compounds was also investigated and revealed the highest activity for compounds 12, 4'-methylxanthohumol (4), and desmethylxanthohumol (2), with 4.4+/-0.6, 3.8+/-0.4, and 3.8+/-0.5 Trolox equivalents, respectively.  相似文献   

4.
The inhibitory activities of 5,6-dihydro-4H-1,3-selenazine derivatives on protein kinases were investigated. In a multiple protein kinase assay using a postnuclear fraction of v-src-transformed NIH3T3 cells, 4-ethyl-4-hydroxy-2-p-tolyl-5, 6-dihydro-4H-1,3-selenazine (TS-2) and 4-hydroxy-6-isopropyl-4-methyl-2-p-tolyl-5,6-dihydro-4H-1, 3-selenazine (TS-4) exhibited selective inhibitory activity against eukaryotic elongation factor-2 kinase (eEF-2K) over protein kinase A (PKA), protein kinase C (PKC) and protein tyrosine kinase (PTK). In further experiments using purified kinases, TS-2 (IC(50)=0.36 microM) and TS-4 (IC(50)=0.31 microM) inhibited eEF-2K about 25-fold more effectively than calmodulin-dependent protein kinase-I (CaMK-I), and about 6-fold (TS-2) or 33-fold (TS-4) more effectively than calmodulin-dependent protein kinase-II (CaMK-II), respectively. TS-2 and TS-4 showed much weaker inhibitory activity toward PKA and PKC, while TS-4, but not TS-2, moderately inhibited immunoprecipitated v-src kinase. TS-2 (10.7-fold) and TS-4 (12.5-fold) demonstrated more potent and more specific eEF-2K inhibitory activity than rottlerin, a previously identified eEF-2K inhibitor. TS-2 inhibited ATP or eEF-2 binding to eEF-2K in a competitive or non-competitive manner, respectively. In cultured v-src-transformed NIH3T3 cells, TS-2 also decreased phospho-eEF-2 protein level (IC(50)=4.7 microM) without changing the total eEF-2 protein level. Taken together, these results suggest that TS-2 and TS-4 are the first identified selective eEF-2K inhibitors and should be useful tools for studying the function of eEF-2K.  相似文献   

5.
Gnetol as a potent tyrosinase inhibitor from genus Gnetum   总被引:3,自引:0,他引:3  
Gnetol (2,3',5',6-tetrahydroxy-trans-stilbene), a naturally occurring compound particularly found in the genus Gnetum, had a strong inhibitory effect on murine tyrosinase activity. Gnetol (IC50, 4.5 microM) was stronger than kojic acid (IC50, 139 microM) as a standard inhibitor for murine tyrosinase activity. Moreover, gnetol significantly suppressed, melanin biosynthesis in murine B16 melanoma cells.  相似文献   

6.
Compounds, which inhibit tyrosinase, could be effective as depigmenting agents. We have introduced a group of mono-, di-, tri- and tetra-substituted hydroxychalcones as effective tyrosinase inhibitors, showing that the most important factor determining tyrosinase inhibition efficiency is the position of the hydroxyl group(s) rather their number. The aim of the present study was to investigate the contribution of the different functional groups of the tetrahydroxychalcones to their inhibitory potency, with a view to optimizing the design of whitening agents. Four tetrahydroxychalcones were evaluated, the commercially available Butein and other three were synthesized, and their inhibitory effect on tyrosinase was tested. Results showed that a 2,4-substituted resorcinol subunit on ring B contributed the most to inhibitory potency. Changing the resorcinol substitute to position 3,5- or placing it on ring A significantly diminished the inhibitory effect of the compounds. A catechol subunit on ring A acted as a metal chelator (in the presence of copper ions) and as a competitive inhibitor (in the presence of tyrosinase), while a catechol on ring B oxidized to o-quinone (in the presence of both copper ions and tyrosinase). Three of the compounds also demonstrated antioxidant activity, which may contribute to the prevention of pigmentation. An examination of correlations between inhibitory activity and physical properties of the chalcones tested (such as dissociation energy and molecular planarity) showed positive correlation with the moment dipole value in the Y-axis, which may be used as an indicator of the inhibitory potential of new molecules. The present study revealed two very active tyrosinase inhibitors, 2,4,3',4'-hydroxychalcone and 2,4,2',4'-hydroxychalcone (with IC50 of 0.2 and 0.02 microM, respectively). Structure-related activity studies added some understanding of the role and contribution of different functional groups associated with tyrosinase inhibitors.  相似文献   

7.
The tyrosinase inhibitory activity of methanol extracts of the leaves of 39 plant species growing on the seashore of Iriomote island (Okinawa, Japan) was investigated. The extracts of Hibiscus tiliaceus, Carex pumila, and Garcinia subelliptica showed potent activity among them. The inhibitors in the extract of Garcinia subelliptica were purified by assay-guided fractionation to give two biflavonoids. These were known compounds (2R,3S-5,7,4',5',7',3',4'-heptahydroxy flavanone[3-8'] flavone and 5,7,4',5',7',3',4'-heptahydroxy[3-8'] biflavanone), although their strong inhibitory activity toward tyrosinase is revealed for the first time in this work. One of these biflavonoids (2R,3S-5,7,4',5',7',3',4'-heptahydroxy flavanone[3-8'] flavone) showed much stronger activity (IC50 2.5 microM) than that of kojic acid (IC50 9.1 microM) when L-tyrosine was used as the substrate.  相似文献   

8.
Vialinin A (1) is an extremely potent inhibitor against tumor necrosis factor (TNF)-α production in rat basophilic leukemia (RBL-2H3) cells. This Letter describes the design and synthesis of its advanced analog, 5',6'-dimethyl-1,1':4'1″-terphenyl-2',3',4,4″-tetraol (2) with a comparable inhibitory activity (IC(50)=0.02 nM) to that of 1. The synthesis involved double Suzuki-Miyaura coupling as a key step, and required only five steps from commercially available 3,4-dimethylphenol. For identification of the target molecule, fluorescent and biotinylated derivatives of 2 were prepared through a 'click' coupling process.  相似文献   

9.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 4-anilinofuro[2,3-b]quinoline and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities by reaction of 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-NH(2) or Ar-OH. Compounds 6a and 15 were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.5 and 16.4 microM, respectively. Compounds 2b, 6a, 10, and 15 also showed potent inhibitory activity (IC(50)=7.2-29.4 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. These results also indicated that oxime derivatives are more potent than the respective ketone precursors (6a> or =2a; 7a> or =3), and the substituent such as Me at the oxime decreased inhibitory activity (6a> or =6b; 7a> or =7b). Among these derivatives, compound 6a showed the most potent activity with IC(50) values of 6.5-11.6 microM for the inhibition of mast cell degranulation and neutrophil degranulation.  相似文献   

10.
Penicillium digitatum, as well as five other citrus pathogenic species, (Penicillium ulaiense Link, Geotrichum citri Link, Botrytis cinerea P. Micheli ex Pers., Lasiodiplodia theobromae (Pat.) Griffon & Maubl., and Phomopsis citri (teleomorph Diaporthe citri)) were observed to convert 6',7'-epoxybergamottin (1) into 6',7'-dihydroxybergamottin (2), bergaptol (3), and an opened lactone ring metabolite 6,7-furano-5-(6',7'-dihydroxy geranyloxy)-2-hydroxy-hydrocoumaric acid (4). Metabolism of 2 by these fungi also proceeded to 4. The structure of 4 was established by high resolution mass spectrometry and (1)H and (13)C NMR techniques. The inhibitory activity of 4 towards human intestinal cytochrome P450 3A4 (CYP3A4) was greatly decreased (IC(50) >172.0 μM) compared to 2 (IC(50)=0.81 μM).  相似文献   

11.
Tetraketones: a new class of tyrosinase inhibitors   总被引:1,自引:0,他引:1  
Twenty-eight tetraketones (1-28) with variable substituents at C-7 were synthesized and evaluated as tyrosinase inhibitors. Remarkably compounds 25 (IC(50)=2.06 microM), 11 (IC(50)=2.09 microM), 15 (IC(50)=2.61 microM), and 27 (IC(50)=3.19 microM) were found to be the most active compounds of the series, even better than both standards kojic acid (IC(50)=16.67 microM) and L-mimosine (IC(50)=3.68 microM). This study may lead to the discovery of therapeutically potent agents against clinically very important dermatological disorders including hyperpigmentation as well as skin melanoma.  相似文献   

12.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

13.
Resveratrol (3,4',5-trihydroxystilbene, RV) exerts remarkable cytostatic and cytotoxic effects against a multitude of human cancer cell lines. Since the introduction of additional hydroxyl groups was supposed to increase the biological activity of RV, we have synthesized a number of polyhydroxylated stilbene analogues as potential antitumor agents. In this study, the activity of 3,3',4,4',5,5'-hexahydroxystilbene (M8) was investigated in HL-60 human promyelocytic leukemia cells. Employing a growth inhibition assay, incubation with M8 and RV resulted in IC50 values of 6.25 and 12 microM, respectively. Using a specific Hoechst/propidium iodide double staining method, we found that M8 was able to induce apoptosis in concentrations significantly lower than those of RV. In addition, M8 arrested cells in the S phase and totally depleted cells in the G2-M phase of the cell cycle (143% and 0% of control after treatment with 12.5 microM M8, respectively). We therefore believe that this promising agent deserves further preclinical and in vivo testing.  相似文献   

14.
2-hydroxy-4-isopropylbenzaldehyde, a potent partial tyrosinase inhibitor   总被引:3,自引:0,他引:3  
Chamaecin (2-hydroxy-4-isopropylbenzaldehyde) was synthesized and tested for its tyrosinase inhibitory activity. It partially inhibits the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by mushroom tyrosinase with an IC(50) of 2.3 microM. The inhibition kinetics analyzed by Dixon plots found that chamaecin is a mixed type inhibitor. This inhibition may come in part from its ability to form a Schiff base with a primary amino group in the enzyme.  相似文献   

15.
The syntheses of the novel C-5 substituted pyrimidine derivatives of l-ascorbic acid containing free hydroxy groups at C-2' (6-10) or C-2' and C-3' (11-15) positions of the lactone ring are described. Debenzylation of the 6-chloro- and 6-(N-pyrrolyl)purine derivatives of 2,3-O,O-dibenzyl-l-ascorbic acid (16 and 17) gave the new compounds containing hydroxy groups at C-2' (18) and C-2' and C-3' (19 and 20). Z- and E-configuration of the C4'C5' double bond and position of the lactone ring of the compounds 6-9 were deduced from their one- and two-dimensional (1)H and (13)C NMR spectra and connectivities in NOESY and HMBC spectra. Compounds 15 and 18 showed the best inhibitory activities of all evaluated compounds in the series. The compound 15 containing 5-(trifluoromethyl)uracil showed marked inhibitory activity against all human malignant cell lines (IC(50): 5.6-12.8 microM) except on human T-lymphocytes. Besides, this compound influenced the cell cycle by increasing the cell population in G2/M phase and induced apoptosis in SW 620 and MiaPaCa-2 cells. The compound 18 containing 6-chloropurine ring expressed the most pronounced inhibitory activities against HeLa (IC(50): 6.8 microM) and MiaPaCa-2 cells (IC(50): 6.5 microM). The compound 20 with 6-(N-pyrrolyl)purine moiety showed the best differential inhibitory effect against MCF-7 cells (IC(50): 35.9 microM).  相似文献   

16.
One new ortho-dihydroxyisoflavone, 7,3',4'-trihydroxyisoflavone (2), and two known ortho-dihydroxyisoflavone derivatives were isolated from 5-year-old Doenjang (Korean fermented soypaste), and evaluated as potent antioxidant by comparing with other known isoflavones. 7,8,4'-Trihydroxyisoflavone (1), 7,3',4'-trihydroxyisoflavone (2), and 6,7,4'-trihydroxyisoflavone (3) inhibited DPPH (Diphenyl-1-picryl hydrazyl) formation by 50% at a concentration of 21.5+/-0.2, 28.7+/-0.4 and 32.6+/-0.6 (IC(50)), respectively, whereas three isoflavones showed weak DPPH radical scavenging activity. In xanthine oxidase (XO) system, in which both inhibition of xanthine oxidase and superoxide scavenging effect were measured in one assay. Compound 1 (IC(50)= 6.6+/-0.4 microM) and 2 (IC(50)=16.8+/-1.2 microM) show significant inhibitory activity and greater effect than allopurinol. But, compound 3 and other isoflavones showed lower inhibition activity. This study shows that the position of hydroxyl substituent at the aromatic ring of isoflavone plays an important role in radical scavenging effect.  相似文献   

17.
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is found in grapes and various medical plants. Among cytotoxic, antifungal, antibacterial cardioprotective activity resveratrol also demonstrates non-selective cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibition. In order to find more selective COX-2 inhibitors a series of methoxylated and hydroxylated resveratrol derivatives were synthesized and evaluated for their ability to inhibit both enzymes using in vitro inhibition assays for COX-1 and COX-2 by measuring PGE(2) production. Hydroxylated but not methoxylated resveratrol derivatives showed a high rate of inhibition. The most potent resveratrol compounds were 3,3',4',5-tetra-trans-hydroxystilbene (COX-1: IC(50)=4.713, COX-2: IC(50)=0.0113 microM, selectivity index=417.08) and 3,3',4,4',5,5'-hexa-hydroxy-trans-stilbene (COX-1: IC(50)=0.748, COX-2: IC(50)=0.00104 microM, selectivity index=719.23). Their selectivity index was in part higher than celecoxib, a selective COX-2 inhibitor already established on the market (COX-1: IC(50)=19.026, COX-2: IC(50)=0.03482 microM, selectivity index=546.41). Effect of structural parameters on COX-2 inhibition was evaluated by quantitative structure-activity relationship (QSAR) analysis and a high correlation was found with the topological surface area TPSA (r=0.93). Docking studies on both COX-1 and COX-2 protein structures also revealed that hydroxylated but not methoxylated resveratrol analogues are able to bind to the previously identified binding sites of the enzymes. Hydroxylated resveratrol analogues therefore represent a novel class of highly selective COX-2 inhibitors and promising candidates for in vivo studies.  相似文献   

18.
A series of novel l-lysine derivatives were designed, synthesized, and assayed for their inhibitory activities on amino-peptidase N (APN)/CD13 and matrix metalloproteinase-2 (MMP-2). The preliminary biological test showed that most of the compounds displayed a high inhibitory activity against MMP-2 and a low activity against APN except compound B6 which exhibited good potency (IC(50)=13.2microM) similar with APN inhibitor Bestatin (IC(50)=15.5microM), and could be used as lead compound in the future.  相似文献   

19.
The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.  相似文献   

20.
Biological activity of N-acetyl-6-sulfo-beta-d-glucosaminides (6-sulfo-GlcNAc 1) having a structural homology to N-acetylneuraminic acid (Neu5Ac 2) and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en 3) was examined in terms of inhibitory activity against influenza virus sialidase (influenza, A/Memphis/1/71 H3N2). pNP 6-Sulfo-GlcNAc 1a was proved to show substantial activity to inhibit the virus sialidase (IC(50)=2.8 mM), though p-nitrophenyl (pNP) GlcNAc without 6-sulfo group and pNP 6-sulfo-GlcNH(3)(+) 1b without 2-NHAc showed little activity (IC(50) >50 mM). The activity was enhanced nearly 100-fold when the pNP group of 1a was converted to p-acetamidophenyl one 5 (IC(50)=30 microM) or replaced with 1-naphthyl 6 (IC(50)=10 microM) or n-propyl one 8 (IC(50)=11 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号