首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rtn1p is involved in structuring the cortical endoplasmic reticulum   总被引:1,自引:0,他引:1       下载免费PDF全文
The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Delta in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Delta cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.  相似文献   

3.
In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain possesses two subregions that seem indispensable for activity. The BiP-binding site was assigned not to these subregions, but to a region neighboring the transmembrane domain. Phenotypic comparison of several Ire1 mutants carrying deletions in the indispensable subregions suggests these subregions are responsible for multiple events that are prerequisites for activation of the overall Ire1 proteins. Unexpectedly, deletion of the BiP-binding site rendered Ire1 unaltered in ER stress inducibility, but hypersensitive to ethanol and high temperature. We conclude that in the ER stress-sensory system BiP is not the principal determinant of Ire1 activity, but an adjustor for sensitivity to various stresses.  相似文献   

4.
We report an essential role for the ras-related small GTP-binding protein rab1b in vesicular transport in mammalian cells. mAbs detect rab1b in both the ER and Golgi compartments. Using an assay which reconstitutes transport between the ER and the cis-Golgi compartment, we find that rab1b is required during an initial step in export of protein from the ER. In addition, it is also required for transport of protein between successive cis- and medial-Golgi compartments. We suggest that rab1b may provide a common link between upstream and downstream components of the vesicular fission and fusion machinery functioning in early compartments of the secretory pathway.  相似文献   

5.
A protein-conducting channel in the endoplasmic reticulum   总被引:47,自引:0,他引:47  
S M Simon  G Blobel 《Cell》1991,65(3):371-380
The existence of a protein-conducting channel in the endoplasmic reticulum membrane was demonstrated by electrophysiological techniques. Pancreatic rough microsome (RM) vesicles were fused to one side (cis) of a planar lipid bilayer separating two aqueous compartments of 50 mM salt. This exposed the cytoplasmic surface of the RMs, with its attached ribosomes, to the cis chamber. Addition of 100 microM puromycin to the cis side caused a large increase in membrane conductance, presumably the result of puromycin-induced clearance of nascent protein chains from the lumen of protein-conducting channels. When puromycin was added at low concentrations (0.33 microM), single channels of 220 pS were observed. These closed when the salt concentration was raised to levels at which ribosomes detach from the membrane (150-400 mM), indicating that the attached ribosome keeps the channel in an open conformation. A mechanism for a complete cycle of opening and closing of the protein-conducting channel is suggested.  相似文献   

6.
Sphingolipids (SLs) are an important class of membrane lipids containing a long chain sphingoid base backbone. SL synthesis is compartmentalized between two major cell organelles, the endoplasmic reticulum (ER) and the Golgi apparatus. The initial steps of sphingolipid synthesis take place in the ER, where the simplest SL, ceramide, is synthesized. Although ceramide is a critical membrane component, an imbalance of ceramide levels can have significant deleterious effects on cell properties leading to events such as apoptosis. For this reason and others, ER ceramide levels must be tightly regulated. Here, we describe the biological and biophysical properties of ceramide and discuss how this might impact the ER membrane. This article is part of a special issue entitled: ER Platforms for Membrane Lipid Dynamics.  相似文献   

7.
Rab5 is a small GTPase that plays roles in the homotypic fusion of early endosomes and regulation of intracellular vesicle transport. We show here that expression of GFP-tagged GTPase-deficient form of Rab5b (Rab5bQ79L) in NRK cells results in the sequential formation of three morphologically and functionally distinct types of endosomes. Expression of GFP-Rab5bQ79L initially caused a homotypic fusion of early endosomes accompanying a redistribution of the TGN-resident cargo molecules, and subsequent fusion with late endosomes/lysosomes, leading to the formation of giant hybrid organelles with features of early endosomes and late endosomes/lysosomes. Surprisingly, the giant endosomes gradually fragmented and shrunk, leading to the accumulation of early endosome clusters and concurrent reformation of late endosomes/lysosomes, a process accelerated by treatment with a phosphatidylinositol-3-kinase (PI(3)K) inhibitor, wortmannin. We postulate that such sequential processes reflect the biogenesis and maintenance of late endosomes/lysosomes, presumably via direct fusion with early endosomes and subsequent fission from hybrid organelles. Thus, our findings suggest a regulatory role for Rab5 in not only the early endocytic pathway, but also the late endocytic pathway, of membrane trafficking in coordination with PI(3)K activity.  相似文献   

8.
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.  相似文献   

9.
Ataxin‐2, a conserved RNA‐binding protein, is implicated in the late‐onset neurodegenerative disease Spinocerebellar ataxia type‐2 (SCA2). SCA2 is characterized by shrunken dendritic arbors and torpedo‐like axons within the Purkinje neurons of the cerebellum. Torpedo‐like axons have been described to contain displaced endoplasmic reticulum (ER) in the periphery of the cell; however, the role of Ataxin‐2 in mediating ER function in SCA2 is unclear. We utilized the Caenorhabditis elegans and Drosophila homologs of Ataxin‐2 (ATX‐2 and DAtx2, respectively) to determine the role of Ataxin‐2 in ER function and dynamics in embryos and neurons. Loss of ATX‐2 and DAtx2 resulted in collapse of the ER in dividing embryonic cells and germline, and ultrastructure analysis revealed unique spherical stacks of ER in mature oocytes and fragmented and truncated ER tubules in the embryo. ATX‐2 and DAtx2 reside in puncta adjacent to the ER in both C. elegans and Drosophila embryos. Lastly, depletion of DAtx2 in cultured Drosophila neurons recapitulated the shrunken dendritic arbor phenotype of SCA2. ER morphology and dynamics were severely disrupted in these neurons. Taken together, we provide evidence that Ataxin‐2 plays an evolutionary conserved role in ER dynamics and morphology in C. elegans and Drosophila embryos during development and in fly neurons, suggesting a possible SCA2 disease mechanism.  相似文献   

10.
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.  相似文献   

11.
Cd is an industrial and environmental pollutant that affects many organs in humans and other mammals. However, the molecular mechanisms of Cd-induced nephrotoxicity are unclear. In this study, we show that endoplasmic reticula (ER) played a pivotal role in Cd-induced apoptosis in mesangial cells. Using Fluo-3 AM, the intracellular concentration of calcium ([Ca2+]i) was detected as being elevated as time elapsed after Cd treatment. Co-treatment with BAPTA-AM, a calcium chelator, was able to significantly suppress Cd-induced apoptosis. Calcineurin is a cytosolic phosphatase, which was able to dephosphorylate the inositol-1,4,5-triphosphate receptor (IP3R) calcium channel to prevent the release of calcium from ER. Cyclosporine A, a calcineurin inhibitor, increased both [Ca2+]i and the percentage of Cd-induced apoptosis. However, EGTA and the IP3R inhibitor, 2-APB, were able to partially modulate Cd cytotoxicity. These results led us to suggest that the extracellular and ER-released calcium plays a crucial role in Cd-induced apoptosis in mesangial cells. Following this line, we further detected the ER stress after Cd treatment since ER is one of the major calcium storage organelles. After Cd exposure, GADD153, a hallmark of ER stress, was upregulated (at 4 h of exposure), followed by activation of ER-specific caspase-12 and its downstream molecule caspase-3 (at 16 h of exposure). The pan caspase inhibitor, Z-VAD, and BAPTA-AM were able to reverse the Cd-induced cell death and ER stress, respectively. Furthermore, the mitochondrial membrane potential (ΔΨm) was depolarized significantly and cytochrome c was released after 24 h of exposure to Cd and followed by mild activation of caspase-9 at the 36-h time point, indicating that mitochondria stress is a late event. Therefore, we concluded that ER is the major killer organelle in Cd-induced mesangial cell apoptosis and that calcium oscillation plays a pivotal role.  相似文献   

12.
13.
Exiting the endoplasmic reticulum   总被引:6,自引:2,他引:4  
Vesicular transport from the endoplasmic reticulum (ER) to the Golgi complex constitutes the initial step in protein secretion. COPII-coated vesicles mediate the export of newly synthesized proteins from the ER, and this transport step is coupled with COPI-mediated retrograde traffic to form a transport circuit that supports the compositional asymmetry of the ER-Golgi system. Biochemical and structural studies have advanced our understanding of the mechanisms that control vesicle formation and cargo-protein capture. Recent work has highlighted the function of transitional ER regions in specifying the location of COPII budding.  相似文献   

14.
Essential role of calcineurin in response to endoplasmic reticulum stress   总被引:11,自引:0,他引:11  
Depletion of calcium ions (Ca2+) from the endoplasmic reticulum (ER) of yeast cells resulted in the activation of the unfolded protein response (UPR) signaling pathway involving Ire1p and Hac1p. The depleted ER also stimulated Ca2+ influx at the plasma membrane through the Cch1p-Mid1p Ca2+ channel and another system. Surprisingly, both Ca2+ influx systems were stimulated upon accumulation of misfolded proteins in the ER even in the presence of Ca2+. The ability of misfolded ER proteins to stimulate Ca2+ influx at the plasma membrane did not require Ire1p or Hac1p, and Ca2+ influx and signaling factors were not required for initial UPR signaling. However, activation of the Ca2+ channel, calmodulin, calcineurin and other factors was necessary for long-term survival of cells undergoing ER stress. A similar calcium cell survival (CCS) pathway operates in the pathogenic fungi and promotes resistance to azole antifungal drugs. These findings reveal an unanticipated new regulatory mechanism that couples ER stress to Ca2+ influx and signaling pathways, which help to prevent cell death and promote resistance to an important class of fungistatic drugs.  相似文献   

15.
Endoplasmic reticulum (ER) Ca2+ refilling is an active process to ensure an appropriate ER Ca2+ content under basal conditions and to maintain or restore ER Ca2+ concentration during/after cell stimulation. The mechanisms to achieve successful ER Ca2+ refilling are multiple and built on a concerted action of processes that provide a suitable reservoir for Ca2+ sequestration into the ER. Despite mitochondria having been found to play an essential role in the maintenance of capacitative Ca2+ entry by buffering subplasmalemmal Ca2+, their contribution to ER Ca2+ refilling was not subjected to detailed analysis so far. Thus, this study was designed to elucidate the involvement of mitochondria in Ca2+ store refilling during and after cell stimulation. ER Ca2+ refilling was found to be accomplished even during continuous inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release by an agonist. Basically, ER Ca2+ refilling depended on the presence of extracellular Ca2+ as the source and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Interestingly, in the presence of an IP3-generating agonist, ER Ca2+ refilling was prevented by the inhibition of trans-mitochondrial Ca2+ flux by CGP 37157 (7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one) that precludes the mitochondrial Na+/Ca2+ exchanger as well as by mitochondrial depolarization using a mixture of oligomycin and antimycin A. In contrast, after the removal of the agonist, ER refilling was found to be largely independent of trans-mitochondrial Ca2+ flux. Under these conditions, ER Ca2+ refilling took place even without an associated Ca2+ elevation in the deeper cytosol, thus, indicating that superficial ER domains mimic mitochondrial Ca2+ buffering and efficiently sequester subplasmalemmal Ca2+ and consequently facilitate capacitative Ca2+ entry. Hence, these data point to different contribution of mitochondria in the process of ER Ca2+ refilling based on the presence or absence of IP3, which represents the turning point for the dependence or autonomy of ER Ca2+ refilling from trans-mitochondrial Ca2+ flux.  相似文献   

16.
Much is known about G protein coupled receptor trafficking and internalization following agonist stimulation. However, much less is known about outward trafficking of receptors from synthesis in the endoplasmic reticulum to the plasma membrane, or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Up to now, very little is understood about receptor hetero-oligomers other than the fact that their assembly is done rapidly after biosynthesis. In our study we use bimolecular fluorescence complementation to selectively follow receptor dimers when expressed in Jurkat cells in order to clarify the trafficking itinerary those receptors follow to reach the plasma membrane and the resulting effect on signal transduction. CXCR4 and CCR5, previously shown to form both homo and hetero-oligomers, were used as our model to understand the specificities of trafficking along the anterograde pathway. The CXCR4 homodimer relies on Rabs2, 6 and 8 for anterograde transport regardless of the presence of endogenous CD4. The CCR5 homodimer relies on Rabs1 and 11 when CD4 is absent, but Rabs1 and 8 when CD4 was present. Interestingly, similar to the CCR5 homodimer, the CXCR4-CCR5 heterodimer relied on Rabs1 and 11 but also required Rab2 when CD4 was absent, and only Rab 1 when CD4 was present. Our results demonstrate that, although the receptors composing the heterodimeric complex are the same as in the homodimeric ones, the heterodimer traffics and signals differently than each homodimer. Our study demonstrates the importance of considering the receptor heterodimers as distinct signaling entities that should be carefully and individually characterized.  相似文献   

17.
18.
The role of p58IPK in protecting the stressed endoplasmic reticulum   总被引:3,自引:0,他引:3       下载免费PDF全文
The preemptive quality control (pQC) pathway protects cells from acute endoplasmic reticulum (ER) stress by attenuating translocation of nascent proteins despite their targeting to translocons at the ER membrane. Here, we investigate the hypothesis that the DnaJ protein p58(IPK) plays an essential role in this process via HSP70 recruitment to the cytosolic face of translocons for extraction of translocationally attenuated nascent chains. Our analyses revealed that the heightened stress sensitivity of p58-/- cells was not due to an impairment of the pQC pathway or elevated ER substrate burden during acute stress. Instead, the lesion was in the protein processing capacity of the ER lumen, where p58(IPK) was found to normally reside in association with BiP. ER lumenal p58(IPK) could be coimmunoprecipitated with a newly synthesized secretory protein in vitro and stimulated protein maturation upon overexpression in cells. These results identify a previously unanticipated location for p58(IPK) in the ER lumen where its putative function as a cochaperone explains the stress-sensitivity phenotype of knockout cells and mice.  相似文献   

19.
Liu J  He YN 《生理科学进展》2010,41(6):439-442
内质网应激是机体对有害刺激的一种自身应答机制,细胞是存活还是死亡取决于刺激信号的强弱,适宜的内质网应激可保护细胞免受各种刺激的损害作用,而过强或过长时间的内质网应激使保护机制不能与损伤抗衡则扰乱内质网稳态,诱导细胞凋亡发生。内质网应激作为多种应激过程的共同通路,与多种肾脏疾病的进展密切相关,例如:肾小球疾病、肾小管间质损伤、肾缺血再灌注损伤、糖尿病肾病等。本文就内质网应激在肾脏疾病进展中作用的研究进展作一综述。  相似文献   

20.
We describe the use of a secreted form of Aequoria victoria green fluorescent protein (secGFP) in a non-invasive live cell assay of membrane traffic in Arabidopsis thaliana. We show that in comparison to GFP-HDEL, which accumulates in the endoplasmic reticulum (ER), secGFP generates a weak fluorescence signal when transported to the apoplast. The fluorescence of secGFP in the apoplast can be increased by growth of seedlings on culture medium buffered at pH 8.1, suggesting that apoplastic pH is responsible, at least in part, for the low fluorescence intensity of seedlings expressing secGFP. Inhibition of secGFP transport between the ER and plasma membrane (PM), either by Brefeldin A (BFA) treatment or by genetic intervention results in increased intracellular secGFP accumulation accompanied by an increase in the secGFP fluorescence intensity. secGFP thus provides a valuable tool for forward and reverse genetic analysis of membrane traffic and endomembrane organisation in Arabidopsis. Using this assay for quantitative sublethal perturbation of secGFP transport, we identify a role for root hair defective 3 (RHD3) in transport of secreted and Golgi markers between the ER and the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号