首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations have been carried regarding carotenoids and vitamin A in the crabs Pachygrapsus marmoratus (FABRE) and Eriphia spinifrons (HERBST) from the Black and Adriatic Sea. The presence of carotenoids and vitamin A was determined by means of column and thinlayer chromatography. The following carotenoids were found: Pachygrapsus marmoratus: β-carotene, cryptoxanthin, canthaxanthin, lutein, astaxanthin and vitamin A; Eriphia spinifrons: β-carotene, echinenone, canthaxanthin, isozeaxanthin, zeaxanthin, lutein (ester and epoxy), astaxanthin and astacene.  相似文献   

2.
3.
Bazyli Czeczuga 《Planta》1972,103(1):87-90
Summary Investigations have been carried out on the carotenoids in Bryum ventricosum Dicks (Bryophyta) from the Pletwicki Lakes (Yugoslavia). The presence of the carotenoids -carotene, cryptoxanthin, lutein (epoxy and free), zeaxanthin, violaxanthin, and neoxanthin was determined by means of column and thin-layer chromatography.  相似文献   

4.
Column and thin‐layer chromatography revealed the presence of the following carotenoids in thalli of Dirinaria applanata from 13 different sites: α‐carotene, β‐carotene, β‐cryptoxanthin, lutein, 3′‐epilutein, zeaxanthin, antheraxanthin, canthaxanthin, astaxanthin, violaxanthin, mutatoxanthin, neoxanthin, capsochrome, fucoxanthinol, paracentrone and apo‐6′‐lycopenal. In the thalli of all 13 specimens of Dirinaria applanata β‐carotene, lutein, astaxanthin and violaxanthin were found as constant carotenoids. The total content of carotenoids ranged from 21.0 (from Mexico) to 54.9 μg g−1 dry weight (from Antilles).  相似文献   

5.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

6.
7.
β-Carotene is thought to be a chain-breaking antioxidant, even though we have no information about the mechanism of its antioxidant activity. Using electron-spin resonance (ESR) spectroscopy coupled to the spin-trapping technique, we have studied the effect of β-carotene and lutein on the radical adducts of the spin-trap PBN (N-t -butyl-α-phenylnitrone) generated by the metal-ion breakdown of different tert -butyl hydroperoxide (t BOOH) concentrations in methylene chloride. The peroxyl radical, along with an oxidation product of PBN (the PBNOx), trapped at room temperature from the breakdown of high concentration of t BOOH (1 M), were quenched by β-carotene or lutein, in competition with the spin-trapping agent. However, carotenoids were not able to quench the alkoxyl and methyl radicals generated in the reaction carried out in the presence of low t BOOH concentration (1 mM). The reaction between carotenoids and the peroxyl radical was also carried out in the absence of the spin trap, at 77 K: Under these different experimental conditions, we did not detect any radical species deriving from carotenoids. In the same system, a further evidence of the peroxyl radical quenching by β-carotene and lutein was obtained. The antioxidant activity of vitamin E was also tested, for comparison with the carotenoids. In the presence of α-tocopherol, peroxyl and alkoxyl radicals were quenched, and the tocopheroxyl radical was detected. Our data provide the first direct evidence that carotenoids quench peroxyl radicals. Under our experimental conditions, we did not detect any carotenoid radical species that could derive from the interaction with the peroxyl radical. The radical-trapping activity of β-carotene and lutein demonstrated in this chemical reaction contributes to our understanding carotenoid antioxidant action in biological systems. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 299–304, 1998  相似文献   

8.
Under nitrogen deficiency the unicellular chlorococcalean green alga, Eremosphaera viridis De Bary, was able to synthesize secondary carotenoids (SC). Nine SC were identified as six astaxanthin esters, echinenone, canthaxanthin and a lutein ester, previously not described in green algae under nitrogen deficiency. These SC, jS-carotene and the main part of lutein were located in lipid bodies outside the chloroplasts in the cytosol. The synthesis of SC could be inhibited by the herbicides norflurazon and nicotine. This result supported the idea that SC in cells ot Eremosphaera viridis were synthesized de novo rather than derived from primary carotenoids.  相似文献   

9.

Background  

Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch) and violaxanthin (in the beta-beta branch). None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold.  相似文献   

10.
The difference in carotenoid components among various color types of soybean seeds, and the changes in carotenoid composition during seed development were examined by reverse-phase high-performance liquid chromatogrphy (HPLC). Lutein was the major carotenoid component in seed extracts from the common yellow soybean and from a variety having a black seed coat. Green soybean seeds contained several xanthophylls in addition to lutein. None of the mature soybean seeds contained β-carotene, a part from a trace amount being detected in a local variety of green soybean. The total carotenoid and lutein contents were higher in green soybeans than in the yellow types, and the estimated total amount of carotenoids correlates with that of chlorophylls. The thylakoid membrane residue in the plastids of green soybean had lost its functional lamella structure. Immature soybean seeds contained a green-vegetable type of carotenoids including α- and β-carotene. The amount of β-carotene decreased more rapidly than that of lutein and chlorophylls during seeds maturation. These results suggest that β-carotene, which acts as a photo-protective agent in developing seeds, is susceptible to degradation in the course of seed maturation.  相似文献   

11.
12.
The carotenoids in the molluscsClanculus cruciatus, Patella coerulea, Mytilus galloprovincialis, Sepia officinalis andLoligo vulgaris from the Adriatic sea were investigated. Their presence was determined by means of columnar and thin-layer chromatography. The following carotenoids were found inC. cruciatus; mytiloxanthin-like, lutein, lutein ester, zeaxanthin and astaxanthin-like; inP. coerulea: mytiloxanthin-like, lutein, lutein ester, lutein-5,6-epoxide, zeaxanthin and astaxanthin-like; inM. galloprovincialis: -carotene, mytiloxanthin-like, lutein, lutein ester, lutein-5,6-epoxide and zeaxanthin; inS. officinalis: -carotene, lutein, lutein ester, tunaxanthin and zeaxanthin; inL. vulgaris: -carotene, -carotene, -carotene, -cryptoxanthin, isocryptoxanthin, isorenieratene, capsanthin, capsorubin, mutatochrome, triophaxanthin, zeaxanthin, 4-hydroxy--carotene and 4-keto--carotene  相似文献   

13.
The carotenoids of the loquat fruit Eriobotrya japonica Golden Nugget variety, were investigated. They were identified according to their chromatographic, spectrophotometric and chemical properties and compared with standard pigments. For some of the carotenoids, MS were determined. Pulp and peels were investigated separately. The main pattern of the pulp carotenoids was β-carotene (33%), γ-carotene (6%), cryptoxanthin (22%), lutein, violaxanthin and neoxanthin, each about 3–4%. The peel, with a carotenoid content 5 times as high, had a similar pattern, but the ratio between the main pigments differed: β-carotene (50%); γ-carotene (5%); cryptoxanthin (5%); lutein (13%); violaxanthin, neoxanthin, 3–4%. The carotenoids of the loquat (subfamily Maloideae) were very similar to those of the apricot (Prunus armeniaca-subfamily Prunoideae) both of the family of Rosaceae. The intergeneric differences are more pronounced, which is of possible taxonomic significance. The lower concentration of cryptoxanthin and the high concentration of lutein in the peels is noteworthy and of biosynthetic interest.  相似文献   

14.
Human retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health–specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive. We have measured the Raman signals originating from MP carotenoids in ex vivo human retinal tissue, in order to assess their structure and conformation. We show that it is possible to distinguish between lutein and zeaxanthin, by their excitation profile (related to their absorption spectra) and the position of their ν1 Raman mode. In addition, analysis of the ν4 Raman band indicates that these carotenoids are present in a specific, constrained conformation in situ, consistent with their binding to specific proteins as postulated in the literature. We discuss how these conclusions relate to the function of these pigments in macular protection. We also address the possibilities for a more accurate, consistent measurement of MP levels by Raman spectroscopy.  相似文献   

15.
The growth performance of the chlorophycean microalga Muriellopsis sp. outdoors in open tanks agitated with a paddlewheel and its ability to accumulate carotenoids have been evaluated throughout the year. The cells grown in the open system had free lutein as the main carotenoid, with violaxanthin, β-carotene, and neoxanthin also present. Lutein content of the dry biomass ranged from 0.4 to 0.6%, depending on the growth and environmental conditions. In addition, the biomass of Muriellopsis sp. had a high content in both protein and lipids with about half of the fatty acids being of the polyunsaturated type, with α-linolenic acid accounting for almost 30% of the total fatty acids. The effect of determinant parameters on the performance of the cultures in open tanks was evaluated. Operating conditions that allow the maintenance of productive cultures were established under semicontinuous regime for 9 months throughout the year. Biomass and lutein yields in the open system were not far from those in closed tubular photobioreactors, and reached productivity values of 20 g dry biomass, containing around 100 mg lutein m−2 day−1 in summer. The outdoor culture of Muriellopsis sp. in open ponds thus represents a real alternative to established systems for the production of lutein.  相似文献   

16.
Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers’ demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on β-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.  相似文献   

17.
Many birds acquire carotenoid pigments from the diet that they deposit into feathers and bare parts to develop extravagant sexual coloration. Although biologists have shown interest in both the mechanisms and function of these colorful displays, the carotenoids ingested and processed by these birds are poorly described. Here we document the carotenoid-pigment profile in the diet, blood and tissue of captive male and female zebra finches (Taeniopygia guttata). Dietary carotenoids including: lutein; zeaxanthin; and β-cryptoxanthin were also present in the plasma, liver, adipose tissue and egg-yolk. These were accompanied in the blood and tissues by a fourth pigment, 2′,3′-anhydrolutein, that was absent from the diet. To our knowledge, this is the first reported documentation of anhydrolutein in any avian species; among animals, it has been previously described only in human skin and serum and in fish liver. We also identified anhydrolutein in the plasma of two closely related estrildid finch species (Estrilda astrild and Sporaeginthus subflavus). Anhydrolutein was the major carotenoid found in zebra finch serum and liver, but did not exceed the concentration of lutein and zeaxanthin in adipose tissue or egg yolk. Whereas the percent composition of zeaxanthin and β-cryptoxanthin were similar between diet and plasma, lutein was comparatively less abundant in plasma than in the diet. Lutein also was proportionally deficient in plasma from birds that circulated a higher percentage of anhydrolutein. These results suggest that zebra finches metabolically derive anhydrolutein from dietary sources of lutein. The production site and physiological function of anhydrolutein have yet to be determined.  相似文献   

18.
The enhanced interest in carotenoid research arises partly because of their application in the food and health industries and partly because of the necessity to find a commercially viable natural source for their mass production. The bottlenecks in finding a natural source of carotenoids which can compete with the synthetic products is the mass production of the organism that produces carotenoids, cell harvesting and extraction methods of carotenoids. The microalga Botryococcus braunii is an interesting organism for its commercial value as a rich source of carotenoids. It contains lutein as major carotenoid which is considered to be one of the beneficial carotenoids in human health applications. The current paper reviews the status of B. braunii as an alternative source of carotenoid production on the commercial scale addressing aspects like cultures of algae, factors that enhance the production and accumulation of carotenoids, cell harvesting methods, and carotenoid extraction. The paper also presents an overview of identification, characterization and structural elucidation of carotenoids from B. braunii and their bioactivity.  相似文献   

19.
Carotenoids in skin have been known to play a role in photoprotection against UV radiation. We performed dermal biopsies of healthy humans (N = 27) and collected blood samples for pair-wise correlation analyses of total and individual carotenoid content by high performance liquid chromatography (HPLC). The hydrocarbon carotenoids (lycopene and beta-carotene) made up the majority of carotenoids in both skin and plasma, and skin was somewhat enriched in these carotenoids relative to plasma. Beta-cryptoxanthin, a monohydroxycarotenoid, was found in similar proportions in skin as in plasma. In contrast, the dihydroxycarotenoids, lutein and zeaxanthin, were relatively lacking in human skin in absolute and relative levels as compared to plasma. Total carotenoids were significantly correlated in skin and plasma (r = 0.53, p < 0.01). Our findings suggest that human skin is relatively enriched in lycopene and beta-carotene, compared to lutein and zeaxanthin, possibly reflecting a specific function of hydrocarbon carotenoids in human skin photoprotection.  相似文献   

20.
The carotenoid pigments of 50 species of 9 siphonean orders were investigated. The algae of all orders contain the principal carotenoids known from other green algae: α- and β-carotene, lutein, lutein epoxide, violaxanthin, and neoxanthin. Additionally, in some Siphonodadales siphonaxanthin is present, in the Derbesiales, Codiales, and Caulerpales both siphonaxanthin and its ester siphonein are present, whereas in the Dichotomosiphonales only the ester siphonein can be found. The chemotaxonomical value of siphonaxanthin and siphonein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号