首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation is initiated within the RNA of the hepatitis C virus at the internal ribosome entry site (IRES). The IRES is a 341-nucleotide element that contains a four-way helical junction (IIIabc) as a functionally important element of the secondary structure. The junction has three additional, nonpaired nucleotides at the point of strand exchange on one diagonal. We have studied the global conformation and folding of this junction in solution, using comparative gel electrophoresis and steady-state and time-resolved fluorescence resonance energy transfer. In the absence of divalent metal ions, the junction adopts an extended-square structure, in contrast to perfect four-way RNA junctions, which retain coaxial helical stacking under all conditions. The IIIabc junction is induced to fold on addition of Mg(2+), by pairwise coaxial stacking of arms, into the conformer in which the unpaired bases are located on the exchanging strands. Fluorescence lifetime measurements indicate that in the presence of Mg(2+) ions, the IIIabc junction exists in a dynamic equilibrium comprising approximately equal populations of antiparallel and parallel species. These dynamic properties may be important in mediating interactions between the IRES and the ribosome and initiation factors.  相似文献   

2.
We have studied the structure of a number of three-way DNA junctions that were closely related in sequence to four-way junctions studied previously. We observe that the electrophoretic mobility of the species derived by selective shortening of one arm of a junction are very similar whichever arm is shortened, and that this remains so whether or not magnesium is present in the buffer. This suggests that the angles subtended between the arms of the three-way junctions are similar. All thymine bases located immediately at the junction are reactive to osmium tetroxide, indicating that out-of-plane attack is not prevented by helix-helix stacking, and this is also independent of the presence or absence of metal cations. The results suggest that the three-way junction cannot undergo an ion-induced conformational folding involving helical stacking, but remains fixed in a Y-shaped extended conformation. Thus the three- and four-way junctions are quite different in character in the presence of cations.  相似文献   

3.
In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme.  相似文献   

4.
Electrophoresis in polyacrylamide gels provides a simple yet powerful means of analyzing the relative disposition of helical arms in branched nucleic acids. The electrophoretic mobility of DNA or RNA with a central discontinuity is determined by the angle subtended between the arms radiating from the branchpoint. In a multi-helical branchpoint, comparative gel electrophoresis can provide a relative measure of all the inter-helical angles and thus the shape and symmetry of the molecule. Using the long-short arm approach, the electrophoretic mobility of all the species with two helical arms that are longer than all others is compared. This can be done as a function of conditions, allowing the analysis of ion-dependent folding of branched DNA and RNA species. Notable successes for the technique include the four-way (Holliday) junction in DNA and helical junctions in functionally significant RNA species such as ribozymes. Many of these structures have subsequently been proved correct by crystallography or other methods, up to 10 years later in the case of the Holliday junction. Just as important, the technique has not failed to date. Comparative gel electrophoresis can provide a window on both fast and slow conformational equilibria such as conformer exchange in four-way DNA junctions. But perhaps the biggest test of the approach has been to deduce the structures of complexes of four-way DNA junctions with proteins. Two recent crystallographic structures show that the global structures were correctly deduced by electrophoresis, proving the worth of the method even in these rather complex systems. Comparative gel electrophoresis is a robust method for the analysis of branched nucleic acids and their complexes.  相似文献   

5.
D M Lilley 《FEBS letters》1999,452(1-2):26-30
The hairpin ribozyme undergoes a site-specific transesterification cleavage of the phosphodiester backbone. The natural form of the ribozyme is a four-way helical junction, where two arms contain unpaired loops. This folds by pairwise coaxial stacking of helical arms, and a rotation into an antiparallel conformation in which there is close association between the loops. This probably generates the local conformation required to facilitate the trajectory into an in-line SN2 transition state. Folding is induced by the cooperative binding of at least two divalent metal ions, which are probably distributed between the junction and the loop-loop interface. The junction forms the structural scaffold on which the geometry of the ribozyme is built, and structural perturbation of the junction leads to impaired catalytic activity.  相似文献   

6.
Effects of base mismatches on the structure of the four-way DNA junction   总被引:3,自引:0,他引:3  
Heteroduplex formation between imperfectly homologous DNA sequences may result in the formation of a four-way junction at which non-Watson-Crick base mismatches are present at the point of strand exchange. This raises the question of the effect of such mismatches on the structure and stability of these potential recombination intermediates. We have constructed a series of four-way DNA junctions containing single-base mismatches, and have studied the structure of the junctions by means of gel electrophoresis and chemical modification. We observed a range of effects on the structure of the junction, ranging from almost total abolition of folding through to normal accommodation into the folded structure. In some cases we observed gel electrophoretic data consistent with a dynamic equilibrium between folded and unfolded conformations, and in general the folded form was favoured at higher concentrations of cation. The effects of single mismatches on the structure of the four-way junction may be summarized in terms of: (1) the nature of the mismatch, where we note a correlation between the thermal stability of a given mismatch and its ability to be accommodated into a folded junction; or (2) the sequence context, where the effect of a given mismatch on the structure of a junction depends on the neighbouring base-pairs. These factors are illustrated by a junction, containing a C.A mismatch, that adopted alternate isomeric conformations dependent upon pH; as the state of protonation of the mispair changed, the structure was altered along with the interaction with neighbouring base-pairs. Most base mismatches may be accommodated into the folded stacked X-conformation of the four-way junction, but many require elevated cation concentration to permit the folding process to proceed. Some mismatches were found to be extremely destabilizing.  相似文献   

7.
Junction-resolving enzymes are nucleases that are specific for the structure of the four-way DNA junction. The binding of RuvC of Escherichia coli and Hjc of Sulfolobus solfataricus can be followed by an increase in the fluorescence anisotropy of Cy3 terminally attached to one of the helical arms of a four-way junction. By contrast, there was no change in fluorescein anisotropy with the binding of single dimers of these proteins. Fluorescence resonance energy transfer has therefore been used between fluorescein and Cy3 fluorophores attached to the ends of helical arms to analyse the global structure of the junction on protein binding. The results indicate that both enzymes induce a marked change in the global DNA conformation on the binding of a single dimer. The structure of the protein-junction complexes is independent of the presence or absence of divalent metal ions, unlike that of the protein-free junction. The structures of the RuvC and Hjc complexes are different, but both represent a significant opening of the structure compared to the stacked X-structure of the protein-free junction in the presence of magnesium ions. This protein-induced opening is likely to be important in the function of these enzymes.  相似文献   

8.
The four-way DNA junction is believed to fold in the presence of metal ions into an X-shaped structure, in which there is pairwise coaxial stacking of helical arms. A restriction enzyme MboII has been used to probe this structure. A junction was constructed containing a recognition site for MboII in one helical arm, positioned such that stacking of arms would result in cleavage in a neighbouring arm. Strong cleavage was observed, at the sites expected on the basis of coaxial stacking. An additional cleavage was seen corresponding to the formation of an alternative stacking isomer, suggesting that the two isomeric forms are in dynamic equilibrium in solution.  相似文献   

9.
Resolving enzymes bind highly selectively to four-way DNA junctions, but the mechanism of this structural specificity is poorly understood. In this study, we have explored the role of interactions between the dimeric enzyme and the helical arms of the junction, using junctions with either shortened arms, or circular permutation of arms. We find that DNA-protein contacts in the arms containing the 5' ends of the continuous strands are very important, conferring a significant level of sequence discrimination upon both the choice of conformer and the order of strand cleavage. We have exploited these properties to obtain hydroxyl radical footprinting data on endonuclease I-junction complexes that are not complicated by the presence of alternative conformers, with results that are in good agreement with the arm permutation and shortening experiments. Substitution of phosphate groups at the center of the junction reveals the importance of electrostatic interactions at the point of strand exchange in the complex. Our data show that the form of the complex between endonuclease I and a DNA junction depends on the core of the junction and on interactions with the first six base-pairs of the arms containing the 5' ends of the continuous strands.  相似文献   

10.
Our knowledge of the architectural principles of nucleic acid junctions has seen significant recent advances. The conformation of DNA junctions is now well understood, and this provides a new basis for the analysis of important structural elements in RNA. The most significant new data have come from X-ray crystallography of four-way DNA junctions; incidentally showing the great importance of serendipity in science, since none of the three groups had deliberately set out to crystallise a junction. Fortunately the results confirm, and of course extend, the earlier conformational studies of DNA junctions in almost every detail. This is important, because it means that these methods can be applied with greater confidence to new systems, especially in RNA. Methods like FRET, chemical probing and even the humble polyacrylamide gel can be rapid and very powerful, allowing the examination of a large number of sequence variants relatively quickly. Molecular modelling in conjunction with experiments is also a very important component of the general approach. Ultimately crystallography provides the gold standard for structural analysis, but the other, simple approaches have considerable value along the way. At the beginning of this review I suggested two simple folding principles for branched nucleic acids, and it is instructive to review these in the light of recent data. In brief, these were the tendency for pairwise coaxial stacking of helical arms, and the importance of metal ion interactions in the induction of folding. We see that both are important in a wide range of systems, both in DNA and RNA. The premier example is the four-way DNA junction, which undergoes metal ion-induced folding into the stacked X-structure that is based on coaxial stacking of arms. As in many systems, there are two alternative ways to achieve this depending on the choice of stacking partners. Recent data reveal that both forms often exist in a dynamic equilibrium, and that the relative stability of the two conformers depends upon base sequence extending a significant distance from the junction. The three-way junction has provided a good test of the folding principles. Perfect three-way (3H) DNA junctions seem to defy these principles in that they appear reluctant to undergo coaxial stacking of arms, and exhibit little change in conformation with addition of metal ions. Modelling suggests that such a junction is stereochemically constrained in an extended conformation. However, upon inclusion of a few additional base pairs at the centre (to create a 3HS2 junction for example) the additional stereochemical flexibility allows two arms to undergo coaxial stacking. Such a junction exhibits all the properties consistent with the general folding principles, with ion-induced folding into a form based on pairwise coaxial stacking of arms in one of two different conformers. The three-way junction is therefore very much the exception that proves the rule. It is instructive to compare the folding of corresponding species in DNA and RNA, where we find both similarities and differences. The RNA four-way junction can adopt a structure that is globally similar to the stacked X-structure (Duckett et al. 1995a), and the crystal structure of the DNAzyme shows that the stacked X-conformation can include one helical pair in the A-conformation (Nowakowski et al. 1999). However, modelling suggests that the juxtaposition of strands and grooves will be less satisfactory in RNA, and the higher magnesium ion concentration required to fold the RNA junction indicates a lower stability of the antiparallel form. Perhaps the biggest difference between the properties of the DNA and RNA four-way junctions is the lack of an unstacked structure at low salt concentrations for the RNA species. This clearly reflects a major difference in the electrostatic interactions in the RNA junction. In general the folding of branched DNA provides some good indications on the likely folding of the corresponding RNA species, but caution is required in making the extrapolation because the two polymers are significantly different. A number of studies point to the flexibility and malleability of branched nucleic acids, and this turns out to have particular significance in their interactions with proteins. Proteins such as the DNA junction-resolving enzymes exhibit considerable selectivity for the structure of their substrates, which is still not understood at a molecular level. Despite this, it appears to be universally true that these proteins distort the global, and in some cases at least the local, structure of the junctions. The somewhat perplexing result is that the proteins appear to distort the very property that they recognise. In general it seems that four-way DNA junctions are opened to one extent or another by interaction with proteins. (ABSTRACT TRUNCATED)  相似文献   

11.
Gel electrophoretic analysis of the geometry of a DNA four-way junction   总被引:20,自引:0,他引:20  
Branched DNA molecules (Holliday structures) are believed to be key intermediates in the process of homologous genetic recombination. However, despite the importance of such structures, their transient nature makes it difficult to analyze their physical properties. In an effort to evaluate several models for the geometry of such branched molecules, a stable, synthetic DNA four-way junction has been constructed. The geometry of the synthetic junction has been probed by gel electrophoresis, utilizing the fact that bent DNA molecules demonstrate reduced mobilities on polyacrylamide gels to an extent that varies with the degree of the bend angle. From the synthetic four-way junction, we have produced a set of molecules in which all combinations of two junction arms have been extended by 105 base-pairs. The electrophoretic mobilities of the extended junctions differ in a manner which indicates that the junction is not a completely flexible structure; nor is it tetrahedral or planar-tetragonal. Instead, the four strands that comprise the DNA four-way junction are structurally non-equivalent. The significance of these observations with regard to previous models for four-way junction geometry is discussed.  相似文献   

12.
Klostermeier D  Millar DP 《Biochemistry》2001,40(37):11211-11218
The hairpin catalytic motif in tobacco ringspot virus satellite RNA consists of two helix-loop-helix elements on two adjacent arms of a four-way helical junction. The bases essential for catalytic activity are located in the loops that are brought into proximity by a conformational change as a prerequisite for catalysis. The two loops interact via a ribose zipper motif involving the 2'-hydroxyls of A10, G11, A24, and C25 [Rupert, P. B., and Ferre d'Amare, A. R. (2001) Nature 401, 780-786]. To quantify the energetic importance of the ribose zipper hydrogen bonds, we have incorporated deoxy modifications at these four positions and determined the resulting destabilization of the docked conformer by means of time-resolved fluorescence resonance energy transfer. In a minimal form of the ribozyme, in which the loops are placed on the arms of a two-way helical junction, all modifications lead to a significant loss in tertiary structure stability and altered Mg2+ binding. Surprisingly, no significant destabilization was seen with the natural four-way junction ribozyme, suggesting that hydrogen bonding interactions involving the 2'-hydroxyls do not contribute to the stability of the docked conformer. These results suggest that the energetic contributions of ribose zipper hydrogen bonds are highly context dependent and differ significantly for the minimal and natural forms of the ribozyme.  相似文献   

13.
Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG). A detailed comparison of the two structures helps to distinguish distortions of the DNA conformation that are inherent to the cross-overs of the junctions in this crystal system from those that are consequences of the mismatched dG.dA base-pair in the d(CCGGGACCGG) structure. This analysis shows that the junction itself perturbs the sequence-dependent conformational features of the B-DNA duplexes and the associated patterns of hydration in the major and minor grooves only minimally. This supports the idea that a DNA four-way junction can be assembled at relatively low energetic cost. Both structures show a concerted rotation of the adjacent duplex arms relative to B-DNA, and this is discussed in terms of the conserved interactions between the duplexes at the junctions and further down the helical arms. The interactions distant from the strand cross-overs of the junction appear to be significant in defining its macroscopic properties, including the angle relating the stacked duplexes across the junction.  相似文献   

14.
Sha R  Liu F  Bruist MF  Seeman NC 《Biochemistry》1999,38(9):2832-2841
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms that flank a branch point. In the presence of Mg2+, the four arms are known to stack in pairs forming two helical domains whose orientations are antiparallel but twisted by about 60 degrees. The basis for the antiparallel orientation of the domains could be either junction structure or the effect of electrostatic repulsion between domains. To discriminate between these two possibilities, we have constructed and characterized an analogue, called a bowtie junction, in which one strand contains a 3',3' linkage at the branch point, the strand opposite it contains a 5',5' linkage, and the other two strands contain conventional 3',5' linkages. Electrostatic effects are expected to lead to an antiparallel structure in this system. We have characterized the molecule in comparison with a conventional immobile branched junction by Ferguson analysis and by observing its thermal transition profile; the two molecules behave virtually identically in these assays. Hydroxyl radical autofootprinting has been used to establish that the unusual linkages occur at the branch point and that the arms stack to form the same domains as the conventional junction. Cooper-Hagerman gel mobility analyses have been used to determine the relative orientations of the helical domains. Remarkably, we find them to be closer to parallel than to antiparallel, suggesting that the preferred structure of the branch point dominates over electrostatic repulsion. We have controlled for the number of available bonds in the branch point, for gel concentration, and for the role of divalent cations. This finding suggests that control of branch point structure alone can lead to parallel domains, which are generally consistent with recombination models derived from genetic data.  相似文献   

15.
The formation of the four-way junction containing four triple-helical arms has been demonstrated using chemical methods (polyacrylamide gel electrophoresis and chemical footprinting using OsO(4) as a probe) and physical methods (UV absorbance melting and DSC). The junction J(T1T3) was assembled from two 20-mer purine strands and two 44-mer pyrimidine strands. To determine the contribution of the different arms to the stability of the complete structure of J(T1T3), the junction was compared to two simplified substructures, J(T1) and J(T3), respectively. Common to these complexes is the underlying double-helical four-way junction Js. Addition of Na(+) had a profound effect on stabilizing and subsequently folding the junctions into the stacked X-structures. The following results support the structure present: (i) The native polyacrylamide electrophoresis exhibits only a single band(s) corresponding to one species present when all four single strands are mixed in equal amounts. (ii) OsO(4) modifications were investigated at pH 5.0 and in the presence of 10 mM Mg(2+) and 100 mM Na(+). There is no cleavage of thymine residues at the branch point and throughout the structure. (iii) The thermal unfolding of J(T1) and J(T3) illustrates that the triple-helical arms are more stable than the double-helical arms which are contained in these junctions and that J(T1T3) with four triple-helical arms is slightly more stable than J(T1) and J(T3). (iv) The calorimetric transition enthalpies determined for the arms of J(T1T3) are comparable to those associated with the unfolding of its corresponding arms in J(T1) and J(T3). The results also illustrate that the formation of the junctions is not restricted by the pH, [Na(+)], sequence composition of the arms, and/or the loop position.  相似文献   

16.
In its natural context, the hairpin ribozyme is constructed around a four-way helical junction. This presents the two loops that interact to form the active site on adjacent arms, requiring rotation into an antiparallel structure to bring them into proximity. In the present study we have compared the folding of this form of the ribozyme and subspecies lacking either the loops or the helical junction using fluorescence resonance energy transfer. The complete ribozyme as a four-way junction folds into an antiparallel structure by the cooperative binding of magnesium ions, requiring 20-40 microM for half-maximal extent of folding ([Mg2+]1/2) and a Hill coefficient n = 2. The isolated junction (lacking the loops) also folds into a corresponding antiparallel structure, but does so noncooperatively (n = 1) at a higher magnesium ion concentration ([Mg2+]1/2 = 3 mM). Introduction of a G + 1A mutation into loop A of the ribozyme results in a species with very similar folding to the simple junction, and complete loss of ribozyme activity. Removal of the junction from the ribozyme, replacing it either with a strand break (serving as a hinge) or a GC5 bulge, results in greatly impaired folding, with [Mg2+]1/2 > 20 mM. The results indicate that the natural form of the ribozyme undergoes ion-induced folding by the cooperative formation of an antiparallel junction and loop-loop interaction to generate the active form of the ribozyme. The four-way junction thus provides a scaffold in the natural RNA that facilitates the folding of the ribozyme into the active form.  相似文献   

17.
Single-molecule fluorescence resonance energy transfer studies of freely diffusing hairpin ribozymes with different combinations of helical junction and loop elements reveal striking differences in their folding behavior. We examined a series of six different ribozymes consisting of two-, three- and four-way junction variants, as well as corresponding constructs with one of the two loops removed. Our results highlight the varying contributions of preformed secondary structure elements to tertiary folding of the hairpin ribozyme. Of the three helical junction variants studied, the four-way junction strongly favored folding to a docked conformation of the two loops, required for catalytic activity. Moreover, the four-way junction was uniquely able to fold to a similar compact structure even in the absence of specific loop-loop docking interactions. A key feature of the data is the observation of broadening/tailing in the fluorescence resonance energy transfer histogram peak for a single-loop mutant of the four-way junction at higher Mg(2+) concentrations, not observed for any of the other single-loop variants. This feature is consistent with interconversion between compact and extended structures, which we estimate takes place on the 100-micros timescale using a simple model for the peak shape. This unique ability of the four-way junction ribozyme to populate an undocked conformation with native-like structure (a quasi-docked state) likely contributes to its greater tertiary structure stability, with the quasi-docked state acting as an intermediate and facilitating the subsequent formation of the specific hydrogen bonding network during docking of the two loops. The inability of two- and three-way junction ribozymes to fully populate a docked conformation reveals the importance of correct helical junction geometry as well as loop elements for effective ribozyme folding.  相似文献   

18.
We have carried out fluorescence resonance energy transfer (FRET) measurements on four-way DNA junctions in order to analyze the global structure and its dependence on the concentration of several types of ions. A knowledge of the structure and its sensitivity to the solution environment is important for a full understanding of recombination events in DNA. The stereochemical arrangement of the four DNA helices that make up the four-way junction was established by a global comparison of the efficiency of FRET between donor and acceptor molecules attached pairwise in all possible permutations to the 5' termini of the duplex arms of the four-way structure. The conclusions are based upon a comparison between a series of many identical DNA molecules which have been labeled on different positions, rather than a determination of a few absolute distances. Details of the FRET analysis are presented; features of the analysis with particular relevance to DNA structures are emphasized. Three methods were employed to determine the efficiency of FRET: (1) enhancement of the acceptor fluorescence, (2) decrease of the donor quantum yield, and (3) shortening of the donor fluorescence lifetime. The FRET results indicate that the arms of the four-way junction are arranged in an antiparallel stacked X-structure when salt is added to the solution. The ion-related conformational change upon addition of salt to a solution originally at low ionic strength progresses in a continuous noncooperative manner as the ionic strength of the solution increases. The mode of ion interaction at the strand exchange site of the junction is discussed.  相似文献   

19.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

20.
Klostermeier D  Millar DP 《Biochemistry》2000,39(42):12970-12978
Helical junctions are ubiquitous structural elements that govern the folding and tertiary structure of RNAs. The tobacco ringspot virus hairpin ribozyme consists of two helix-loop-helix elements that lie on adjacent arms of a four-way junction. In the active form of the hairpin ribozyme, the loops are in proximity. The nature of the helical junction determines the stability of the hairpin ribozyme tertiary structure [Walter, N. G., Burke, J. M., and Millar, D. P. (1999) Nat. Struct. Biol. 6, 544-549] and thus its catalytic activity. We used two-, three-, and four-way junction hairpin ribozymes as model systems to investigate the thermodynamic basis for the different tertiary structure stabilities. The equilibrium between docked and extended conformers was analyzed as a function of temperature using time-resolved fluorescence resonance energy transfer (trFRET). As the secondary and tertiary structure transitions overlap, information from UV melting curves and trFRET had to be combined to gain insight into the thermodynamics of both structural transitions. It turned out that the higher tertiary structure stability observed in the context of a four-way junction is the result of a lower entropic cost for the docking process. In the two- and three-way junction ribozymes, a high entropic cost counteracts the favorable enthalpic term, rendering the docked conformer only marginally stable. Thus, two- and three-way junction tertiary structures are more sensitive toward regulation by ligands, whereas four-way junctions provide a stable scaffold. Altogether, RNA folding and stability appear to be governed by principles similar to those for the folding of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号