首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The reproductive genes of fungi, like those of many other organisms, are thought to diversify rapidly. This phenomenon could be associated with the formation of reproductive barriers and speciation. Ascomycetes produce two classes of mating type-specific peptide pheromones. These are required for recognition between the mating types of heterothallic species. Little is known regarding the diversity or the extent of species specificity in pheromone peptides among these fungi. We compared the putative protein-coding DNA sequences of the 2 pheromone classes from 70 species of Ascomycetes. The data set included previously described pheromones and putative pheromones identified from genomic sequences. In addition, pheromone genes from 12 Fusarium species in the Gibberella fujikuroi complex were amplified and sequenced. Pheromones were largely conserved among species in this complex and, therefore, cannot alone account for the reproductive barriers observed between these species. In contrast, pheromone peptides were highly diverse among many other Ascomycetes, with evidence for both positive diversifying selection and relaxed selective constraint. Repeats of the α-factor-like pheromone, which occur in tandem arrays of variable copy number, were found to be conserved through purifying selection and not concerted evolution. This implies that sequence specificity may be important for pheromone reception and that interspecific differences may indeed be associated with functional divergence. Our findings also suggest that frequent duplication and loss causes the tandem repeats to experience "birth-and-death" evolution, which could in fact facilitate interspecific divergence of pheromone peptide sequences.  相似文献   

2.
Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. Class II peroxidases are involved in lignin biodegradation and are found only in the Homobasidiomycetes. In fact class II peroxidases were identified in only three orders, although degenerate forms were found in different Pezizomycota orders. Class III peroxidases are specific for higher plants, and their evolution is thought to be related to the emergence of the land plants. We have found, however, that class III peroxidases are present in some green algae, which predate land colonization. The presence of peroxidases in all major phyla (except vertebrates) makes them powerful marker genes for understanding the early evolutionary events that led to the appearance of the ancestors of each eukaryotic group.  相似文献   

3.
Summary The molecular weights of the 18s and 25s ribosomal RNA components of fungi from all major classes were determined by electrophoresis in polyacrylamide gels. The molecular weight of the 18s RNA was found to be very similar for all fungi (range 0.71–0.75 million) and about 4–5% larger than the 18s RNA of HeLa cells and soybean. The molecular weight of the 25s RNA ranged between 1.45 million in the Myxomycetes and 1.30–1.31 million in the Ascomycetes and Basidiomycetes. The differences in the 25s RNA molecular weights between various classes of fungi were interpreted as being in agreement with a monophyletic origin of the Chytridiomycetes, Zygomycetes, Ascomycetes and Basidiomycetes, and independent origins for the Myxomycetes and the Oomycetes. The Hyphochytridiomycete examined could not be placed unequivocally in any group on the basis of its 25s RNA. Fungal RNA extracted with a p-aminosalicylate-triisopropylnaphthalene sulfonate-phenol mixture at 40–60°C contained a high molecular weight aggregate of the 18s and 25s ribosomal RNA; this suggested significant base sequence homology between the two ribosomal RNA species in fungi.  相似文献   

4.
The aim of this study was to elucidate the evolution of enzyme secretome of early lineage fungi to contribute to resolving the basal part of Fungal Kingdom and pave the way for industrial evaluation of their unique enzymes. By combining results of advanced sequence analysis with secretome mass spectrometry and phylogenetic trees, we provide evidence for that plant cell wall degrading enzymes of higher fungi share a common ancestor with enzymes from aerobic ancient fungi. Sequence analysis (HotPep, confirmed by dbCAN-HMM models) enabled prediction of enzyme function directly from sequence. For the first time, oxidative enzymes are described here in early lineage fungi (Chytridiomycota & Cryptomycota), which supports the conceptually new understanding that fungal LPMOs were also present in the early evolution of the Fungal Kingdom. Phylogenetic analysis of fungal AA9 proteins suggests an LPMO-common-ancestor with Ascomycetes and Basidiomycetes and describes a new clade of AA9s. We identified two very strong biomass degraders, Rhizophlyctis rosea (soil-inhabiting) and Neocallimastix californiae (rumen), with a rich spectrum of cellulolytic, xylanolytic and pectinolytic enzymes, characteristically including several different enzymes with the same function. Their secretome composition suggests horizontal gene transfer was involved in transition to terrestrial and rumen habitats. Methods developed for recombinant production and protein characterization of enzymes from zoosporic fungi pave the way for biotechnological exploitation of unique enzymes from early lineage fungi with potential to contribute to improved biomass conversion. The phyla of ancient fungi through evolution have developed to be very different and together they constitute a rich enzyme discovery pool.  相似文献   

5.
The symbiotic protists of the lower termite have been regarded as a model of early-branched eukaryotes because of their simple cellular systems and morphological features. However, cultivation of these symbiotic protists is very difficult. For this reason, these interesting protists have not been well characterized in terms of their molecular biology. In research on these organisms which have not yet been cultivated, we developed a method for retrieving specific genes from a small number of cells, through micromanipulation without axenic cultivation, and we obtained EF-1 alpha and alpha-tubulin genes from members of the Hypermastigida--the parabasalid protist Trichonympha agilis and the oxymonad protists Pyrsonympha grandis and Dinenympha exilis--from the termite Reticulitermes speratus gut community. Results of phylogenetic analysis of the amino acid sequences of both proteins, EF-1 alpha and alpha-tubulin, indicate that the hypermastigid, parabasalid, and oxymonad protists do not share a close common ancestor. In addition, although the EF-1 alpha phylogeny indicates that these two groups of protists branched at an early stage of eukaryotic evolution, the alpha-tubulin phylogeny indicates that these protists can be assigned to two diversified clades. As shown in a recent investigation of alpha-tubulin phylogeny, eukaryotic organisms can be divided into three classes: an animal--parabasalids clade, a plant--protists clade, and the diplomonads. In this study, we show that parabasalids, including hypermastigids, can be classified as belonging to the animal--parabasalids clade and the early-branching eukaryote oxymonads can be classified as belonging to the plant--protists clade. Our findings suggest that these protists have a cellular microtubule system that has diverged considerably, and it seems that such divergence of the microtubule system occurred in the earliest stage of eukaryotic evolution.  相似文献   

6.
Two fungal-like organisms (class Oomycetes) and 263 species of fungi from 111 genera, 42 families, 23 orders, and 7 classes have been found on the territory of Aksu-Zhabagly Nature Reserve. Twenty-two species are found for the first time. The vast majority of species are parasitic (202 species), 56 species belong to saprotrophs, and 7 to symbiotrophs. Classes Taphrinomycetes, Urediniomycetes, and Ustilaginomycetes are represented exclusively by parasites. There have been found 21 saprotrophic, 27 parasitic, and 4 symbiotrophic species in the class Ascomycetes. The most numerous group in the class Basidiomycetes is the group of humus saprotrophs; it contains 15 species. Groups of litter saprotrophs and parasites contain four species each, symbiotrophic species have three species, coprotrophs and xylotrophs have two species each, and litter and humus saprotrophs have one species each. Anamorphic fungi are represented by 91 parasitic and 11 saprotrophic species. In comparison with closely located Sairam-Ugam National Park and the Karatau Nature Reserve, the mycobiota of Aksu-Zhabagly is characterized by a significant number of species in the classes Basidiomycetes, Urediniomycetes, Hyphomycetes, and Coelomycetes. Thirty-one species are common to these protected areas. The most numerous group is parasites.  相似文献   

7.
Three isolates of Neocallimastix frontalis grown in pure culture with glucose as substrate differed in their response to the presence of lasalocid in the growth medium. For two strains (RE1 and RK21) hydrogen production and glucose uptake were reduced to 50% or less of the control values in the presence of lasalocid at 0–25 μg/ ml. A third strain (PNK2) retained significant fermentative ability in the presence of at least four times this amount of lasalocid. Lasalocid was rather less inhibitory to the solubilization of straw by these fungi, PNK2 again providing the most resistant strain. It is concluded that the use of lasalocid in ruminant feeds is likely to have a strain selective effect on the rumen population of Neocallimastix.  相似文献   

8.
The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae.  相似文献   

9.
We summarized experimental data on species diversity of fungi decomposing synthetic polymeric materials. Most of the fungi were anamorphs of the phylum Ascomycota, class Ascomycetes (231 species and 85 genera). Teleomorphs of ascomycetes were represented by 18 species and 7 genera. We revealed a smaller number of fungi belonging to the phylum Zygomycota, class Zygomycetes (31 species and 15 genera), or the phylum Basidiomycota, class Basidiomycetes (5 species and 5 genera). The specific composition of fungi was assessed on polymeric materials of various classes.  相似文献   

10.
Abstract The effects of co-cultivation with the hydrogen-utilizing acetogenic bacterium Acetitomaculum ruminis on the fermentative activities of the rumen fungi Neocallimastix patriciarum or Neocallimastix sp. L2 were investigated. In both co-cultures acetate production increased, making it the predominant fermentation product, as the accumulation of lactate, formate, ethanol, H2 and (in the case of Neocallimastix sp. L2) succinate all decreased. The effects of co-cultivation with Methanobrevibacter smithii were more pronounced. Decreased activities of lactate dehydrogenase, alcohol dehydrogenase and (in the case of Neocallimastix sp. L2) fumarate reductase accompanied the shift in fermentation product formation. The rate of glucose utilization and the fungal biomass yield were also increased in the co-culture.  相似文献   

11.
Using a dataset comprising 5.8S rDNA sequences from a wide range of fungi, we show that some sequences reported recently from the arbuscular mycorrhizal (AM) fungus Scutellospora castanea most likely originate from Ascomycetes. Other ITS and 5.8S sequences which were previously reported are confirmed as being clearly of mycorrhizal origin and are variable within one isolate of S. castanea. However, these results mean that previous conclusions which were drawn regarding the heterokaryotic status of AM fungal spores remain unproven. We provide an enlarged 5.8S rDNA dataset that can be used to check ITS sequences for conflicts with well-established phylogenies of the organisms that they were obtained from.  相似文献   

12.
Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe the first NAT homologues in viruses, archaea, protists, many fungi and invertebrates, providing complete annotations in line with the consensus nomenclature. Contrary to the NAT genes of vertebrates, introns are commonly found within the homologous coding regions of lower eukaryotes. The NATs of fungi and higher animals are distinctly monophyletic, but evidence supports a mixed phylogeny of NATs among bacteria, protists and possibly some invertebrates.  相似文献   

13.
J O Corliss 《Bio Systems》1992,28(1-3):1-14
The present Botanical and Zoological Codes of Nomenclature are often inadequate for resolution of all the peculiar problems caused by the very nature of the numerous and diverse groups of the so-called 'lower' eukaryotic organisms known as protists. Whether or not a separate code should therefore be created for these species--many but not all of which are unicellular in structure and microscopic in size--is complicated by several factors. The principal one is related to the wide dispersal of protists throughout many taxonomic classes and phyla/divisions; sometimes even multiple kingdoms are involved. If recognition of a single kingdom Protista is no longer tenable, then even the concept of one code per kingdom is not applicable. Other difficulties arise primarily from long-standing differences in major provisions of present Botanical and Zoological Codes. Numerous 'ambiregnal' forms exist, species currently under dual code jurisdiction. The matter of names for suprafamilial taxa of protists, irrespective of their ultimate kingdom assignment, poses another set of concerns not yet resolved. A plea is made to recognize the legitimacy of having distinct high-level ranks for protist species that seem to be widely separated phylogenetically from fellow protists or from other eukaryotic assemblages.  相似文献   

14.
A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.  相似文献   

15.
Since the emergence of the ‘microbial loop’ concept, heterotrophic flagellates have received particular attention as grazers in aquatic ecosystems. These microbes have historically been regarded incorrectly as a homogeneous group of bacterivorous protists in aquatic systems. More recently, environmental rDNA surveys of small heterotrophic flagellates in the pelagic zone of freshwater ecosystems have provided new insights. (i) The dominant phyla found by molecular studies differed significantly from those known from morphological studies with the light microscope, (ii) the retrieved phylotypes generally belong to well-established eukaryotic clades, but there is a very large diversity within these clades and (iii) a substantial part of the retrieved sequences cannot be assigned to bacterivorous but can be assigned instead to parasitic and saprophytic organisms, such as zoosporic true fungi (chytrids), fungus-like organisms (stramenopiles), or virulent alveolate parasites (Perkinsozoa and Amoebophrya sp.). All these microorganisms are able to produce small zoospores to assure dispersal in water during their life-cycles. Based on the existing literature on true fungi and fungus-like organisms, and on the more recently published eukaryotic rDNA environmental studies and morphological observations, we conclude that previously overlooked microbial diversity and related ecological potentials require intensive investigation (i) for an improved understanding of the roles of heterotrophic flagellates in pelagic ecosystems and (ii) to properly integrate the concept of ‘the microbial loop’ into modern pelagic microbial ecology.  相似文献   

16.
The fermentative characteristics of anaerobic rumen fungi   总被引:4,自引:0,他引:4  
Substrate utilization and fermentation characteristics of rumen fungi of the genus Neocallimastix are described. Preliminary observations on the removal of monosaccharides from plant cell walls and the effect of fermentation products on growth of Neocallimastix sp. (isolate R1) are presented. The properties of rumen fungi are discussed in relation to their role in the rumen.  相似文献   

17.
Using a dataset comprising 5.8S rDNA sequences from a wide range of fungi, we show that some sequences reported recently from the arbuscular mycorrhizal (AM) fungus Scutellospora castanea most likely originate from Ascomycetes. Other ITS and 5.8S sequences which were previously reported are confirmed as being clearly of mycorrhizal origin and are variable within one isolate of S. castanea. However, these results mean that previous conclusions which were drawn regarding the heterokaryotic status of AM fungal spores remain unproven. We provide an enlarged 5.8S rDNA dataset that can be used to check ITS sequences for conflicts with well-established phylogenies of the organisms that they were obtained from.  相似文献   

18.
The morphological, ecological, and clinical diversity among ascomycete fungi that are pathogenic to humans suggest that the potential for pathogenicity may have arisen multiple times within these higher fungi. We have obtained 18S ribosomal DNA sequences from a diverse group of human pathogenic fungi in order to determine their evolutionary origins. The fungi studied include a skin pathogen that is confined to humans (Trichophyton rubrum) and three systemic, facultative parasites that cause histoplasmosis (Histoplasma capsulatum), blastomycosis (Blastomyces dermatitidis) and coccidioidomycosis (Coccidioides immitis) in humans and other higher animals. Also included in our analysis are representatives of non-pathogenic fungi, as well as two opportunistic pathogens, Pneumocystis carinii and Candida albicans, that cause severe disease in immunocompromised individuals, especially those with AIDS. Two of the fungi we sequenced, T. rubrum and C. immitis, are limited to asexual modes of reproduction and therefore lack the sexual structures that are most useful for evolutionary comparison as well as being essential for classification among the higher fungi. Coccidioides immitis is particularly problematic owing to its contradictory and confusing asexual morphologies, which have caused it to be placed in three fungal classes and the protista. Our analysis shows that the specialized, superficial parasite and the systemic, facultative parasites, including C. immitis, are closely related ascomycetes, which clearly demonstrates the power of molecular characters to compensate for missing or confusing reproductive morphology. Analysis also shows that the opportunistic pathogens are more distantly related, with the likely explanation that pathogenicity has arisen more than once within the Ascomycetes.  相似文献   

19.
Enzymes that utilize nicotinamide adenine dinucleotide (NAD) or its 2'-phosphate derivative (NADP) are found throughout the kingdoms of life. These enzymes are fundamental to many biochemical pathways, including central intermediary metabolism and mechanisms for cell survival and defense. The complete genomes of 25 organisms representing bacteria, protists, fungi, plants, and animals, and 811 viruses, were mined to identify and classify NAD(P)-dependent enzymes. An average of 3.4% of the proteins in these genomes was categorized as NAD(P)-utilizing proteins, with highest prevalence in the medium-chain oxidoreductase and short-chain oxidoreductase families. In general, the distribution of these enzymes by oxidoreductase family was correlated to the number of different catalytic mechanisms in each family. Organisms with smaller genomes encoded a larger proportion of NAD(P)-dependent enzymes in their proteome (approximately 6%) as compared to the larger genomes of eukaryotes (approximately 3%). Among viruses, those with large, double-strand DNA genomes were shown to encode oxidoreductases. Gram-positive and gram-negative bacteria showed some differences in the distribution of NAD(P)-dependent proteins. Several organisms such as M. tuberculosis, P. falciparum, and A. thaliana showed unique distributions of oxidoreductases corresponding to some phenotypic features.  相似文献   

20.
Growth and survival of rumen fungi   总被引:1,自引:0,他引:1  
The life cycle and growth kinetics of an anaerobic rumen fungus (Neocallimastix R1) in liquid and solid media are described, together with its response to light, temperature and oxygen. These results are discussed in relation to the survival of rumen fungi in saliva and faeces of sheep, and the possible routes for the transfer of anaerobic fungi between ruminants. The thallus and life cycle of Neocallimastix R1 are compared with those of aerobic chytrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号