首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantitative analysis of signaling networks requires highly sensitive methods for the time-resolved determination of protein phosphorylation. For this reason, we developed a quantitative protein microarray that monitors the activation of multiple signaling pathways in parallel, and at high temporal resolution. A label-free sandwich approach was combined with near infrared detection, thus permitting the accurate quantification of low-level phosphoproteins in limited biological samples corresponding to less than 50,000 cells, and with a very low standard deviation of approximately 5%. The identification of suitable antibody pairs was facilitated by determining their accuracy and dynamic range using our customized software package Quantpro. Thus, we are providing an important tool to generate quantitative data for systems biology approaches, and to drive innovative diagnostic applications.  相似文献   

2.
Antibody microarrays have often had limited success in detection of low abundant proteins in complex specimens. Signal amplification systems improve this situation, but still are quite laborious and expensive. However, the issue of sensitivity is more likely a matter of kinetically appropriate microarray design as demonstrated previously. Hence, we re-examined in this study the suitability of simple and inexpensive detection approaches for highly sensitive antibody microarray analysis. N-hydroxysuccinimidyl ester (NHS)- and Universal Linkage System (ULS)-based fluorescein and biotin labels used as tags for subsequent detection with anti-fluorescein and extravidin, respectively, as well as fluorescent dyes were applied for analysis of blood plasma. Parameters modifying strongly the performance of microarray detection such as labeling conditions, incubation time, concentrations of anti-fluorescein and extravidin and extent of protein labeling were analyzed and optimized in this study. Indirect detection strategies whether based on NHS- or ULS-chemistries strongly outperformed direct fluorescent labeling and enabled detection of low abundant cytokines with many dozen-fold signal-to-noise ratios. Finally, particularly sensitive detection chemistry was applied to monitoring cytokine production of stimulated peripheral T cells. Microarray data were in accord with quantitative cytokine levels measured by ELISA and Luminex, demonstrating comparable reliability and femtomolar range sensitivity of the established microarray approach.  相似文献   

3.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein–protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

4.
An important component of proteomic research is the high-throughput discovery of novel proteins and protein-protein interactions that control molecular events that contribute to critical cellular functions and human disease. The interactions of proteins are essential for cellular functions. Identifying perturbation of normal cellular protein interactions is vital for understanding the disease process and intervening to control the disease. A second area of proteomics research is the discovery of proteins that will serve as biomarkers for the early detection, diagnosis and drug treatment response for specific diseases. These studies have been referred to as clinical proteomics. To discover biomarkers, proteomics research employs the quantitative comparison of peptide and protein expression in body fluids and tissues from diseased individuals (case) versus normal individuals (control). Methods that couple 2D capillary liquid chromatography (LC) and tandem mass spectrometry (MS/MS) analysis have greatly facilitated this discovery science. Coupling 2D-LC/MS/MS analysis with automated genome-assisted spectra interpretation allows a direct, high-throughput and high-sensitivity identification of thousands of individual proteins from complex biological samples. The systematic comparison of experimental conditions and controls allows protein function or disease states to be modeled. This review discusses the different purification and quantification strategies that have been developed and used in combination with 2D-LC/MS/MS and computational analysis to examine regulatory protein networks and clinical samples.  相似文献   

5.
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.  相似文献   

6.
The detection and quantification of plasma (serum) proteins at or below the ng/ml concentration range are of critical importance for the discovery and evaluation of new protein biomarkers. This has been achieved either by the development of high sensitivity ELISA or other immunoassays for specific proteins or by the extensive fractionation of the plasma proteome followed by the mass spectrometric analysis of the resulting fractions. The first approach is limited by the high cost and time investment for assay development and the requirement of a validated target. The second, although reasonably comprehensive and unbiased, is limited by sample throughput. Here we describe a method for the detection of plasma proteins at concentrations in the ng/ml or sub-ng/ml range and their accurate quantification over 5 orders of magnitude. The method is based on the selective isolation of N-glycosites from the plasma proteome and the detection and quantification of targeted peptides in a quadrupole linear ion trap instrument operated in the multiple reaction monitoring (MRM) mode. The unprecedented sensitivity of the mass spectrometric analysis of minimally fractionated plasma samples is the result of the significantly reduced sample complexity of the isolated N-glycosites compared with whole plasma proteome digests and the selectivity of the MRM process. Precise quantification was achieved via stable isotope dilution by adding (13)C- and/or (15)N-labeled reference analytes. We also demonstrate the possibility of significantly expanding the number of MRM measurements during one single LC-MS run without compromising sensitivity by including elution time constraints for the targeted transitions, thus allowing quantification of large sets of peptides in a single analysis.  相似文献   

7.
A comparative study on the three quantitative methods frequently used in proteomics, 2D DIGE (difference gel electrophoresis), cICAT (cleavable isotope-coded affinity tags) and iTRAQ (isobaric tags for relative and absolute quantification), was carried out. DIGE and cICAT are familiar techniques used in gel- and LC-based quantitative proteomics, respectively. iTRAQ is a new LC-based technique which is gradually gaining in popularity. A systematic comparison among these quantitative methods has not been reported. In this study, we conducted well-designed comparisons using a six-protein mixture, a reconstituted protein mixture (BSA spiked into human plasma devoid of six abundant proteins), and complex HCT-116 cell lysates as the samples. All three techniques yielded quantitative results with reasonable accuracy when the six-protein or the reconstituted protein mixture was used. In DIGE, accurate quantification was sometimes compromised due to comigration or partial comigration of proteins. The iTRAQ method is more susceptible to errors in precursor ion isolation, which could be manifested with increasing sample complexity. The quantification sensitivity of each method was estimated by the number of peptides detected for each protein. In this regard, the global-tagging iTRAQ technique was more sensitive than the cysteine-specific cICAT method, which in turn was as sensitive as, if not more sensitive than, the DIGE technique. Protein profiling on HCT-116 and HCT-116 p53 -/- cell lysates displayed limited overlapping among proteins identified by the three methods, suggesting the complementary nature of these methods.  相似文献   

8.
9.
New technologies are needed that can diagnose cancer more rapidly and accurately. These technologies must also have the ability to identify the particular cellular abnormalities contributing to the malignancy, thus directing the appropriate treatments. Such technologies should permit absolute quantitation of specific tumor biomarkers and their level of posttranslational modifications. Quantitative molecular profiling of cancer signaling networks would provide a more detailed understanding of the contribution of protein expression and posttranslational modification levels to tumorigenesis. We have developed a unique approach for absolute quantitation of protein expression that integrates affinity capture of proteolytic peptides with mass spectrometry and thus provides detection, identification, and quantitation of their cognate proteins. We have previously shown the high sensitivity and specificity of this approach. Here we demonstrate the absolute quantitation of a model peptide using our technology. We have used this approach to capture epitope-containing peptides from proteolytically digested target proteins, including p53, epidermal growth factor receptor (EGFR), and prostate-specific antigen (PSA). Our technology can easily be extended to the absolute quantitation of protein modification levels, in addition to the determination of protein expression levels, and can be readily adapted for use in a microarray format. This method offers an improved approach to protein chip technology that should prove useful for clinical diagnosis and drug development applications.  相似文献   

10.
11.
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.  相似文献   

12.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

13.
Large-scale protein quantification has become a major proteomics application in many areas of biological and medical research. During the past years, different techniques have been developed, including gel-based such as differential in-gel electrophoresis (DIGE) and liquid chromatography-based such as isotope labeling and label-free quantification. These quantitative proteomics tools hold significant promise for biomarker discovery, diagnostic and therapeutic applications. They are also important for research in functional genomics and systems biology towards basic understanding of molecular networks and pathway interactions. In this review, we summarize current technologies in quantitative proteomics and discuss recent applications of the technologies.  相似文献   

14.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

15.
Mass spectrometry (MS) -- based proteomic approaches have evolved as powerful tools for the discovery of biomarkers. However, the identification of potential protein biomarkers from biofluid samples is challenging because of the limited dynamic range of detection. Currently there is a lack of sensitive and reliable premortem diagnostic test for prion diseases. Here, we describe the use of a combined MS-based approach for biomarker discovery in prion diseases from mouse plasma samples. To overcome the limited dynamic range of detection and sample complexity of plasma samples, we used lectin affinity chromatography and multidimensional separations to enrich and isolate glycoproteins at low abundance. Relative quantitation of a panel of proteins was obtained by a combination of isotopic labeling and validated by spectral counting. Overall 708 proteins were identified, 53 of which showed more than 2-fold increase in concentration whereas 58 exhibited more than 2-fold decrease. A few of the potential candidate markers were previously associated with prion or other neurodegenerative diseases.  相似文献   

16.
Biomedical applications of protein chips   总被引:2,自引:0,他引:2  
The development of microchips involving proteins has accelerated within the past few years. Although DNA chip technologies formed the precedent, many different strategies and technologies have been used because proteins are inherently a more complex type of molecule. This review covers the various biomedical applications of protein chips in diagnostics, drug screening and testing, disease monitoring, drug discovery (proteomics), and medical research. The proteomics and drug discovery section is further subdivided to cover drug discovery tools (on-chip separations, expression profiling, and antibody arrays), molecular interactions and signaling pathways, the identification of protein function, and the identification of novel therapeutic compounds. Although largely focused on protein chips, this review includes chips involving cells and tissues as a logical extension of the type of data that can be generated from these microchips.  相似文献   

17.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   

18.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

19.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   

20.
A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号