首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alternatively spliced isoform of nonmuscle myosin II heavy chain B (MHC-IIB) with an insert of 21 amino acids in the actin-binding surface loop (loop 2), MHC-IIB(B2), is expressed specifically in the central nervous system of vertebrates. To examine the role of the B2 insert in the motor activity of the myosin II molecule, we expressed chimeric myosin heavy chain molecules using the Dictyostelium myosin II heavy chain as the backbone. We replaced the Dictyostelium native loop 2 with either the noninserted form of loop 2 from human MHC-IIB or the B2-inserted form of loop 2 from human MHC-IIB(B2). The transformant Dictyostelium cells expressing only the B2-inserted chimeric myosin formed unusual fruiting bodies. We then assessed the function of chimeric proteins, using an in vitro motility assay and by measuring ATPase activities and binding to F-actin. We demonstrate that the insertion of the B2 sequence reduces the motor activity of Dictyostelium myosin II, with reduction of the maximal actin-activated ATPase activity and a decrease in the affinity for actin. In addition, we demonstrate that the native loop 2 sequence of Dictyostelium myosin II is required for the regulation of the actin-activated ATPase activity by phosphorylation of the regulatory light chain.  相似文献   

2.
A long alpha-helix in myosin head constitutes a lever arm together with light chains. It is known from X-ray crystallographic studies that the first three turns of this lever arm alpha-helix are inserted into the converter region of myosin. We previously showed that chimeric Chara myosin in which the motor domain of Chara myosin was connected to the lever arm alpha-helix of Dictyostelium myosin had motility far less than that expected for the motor domain of Chara myosin. Here, we replaced the inserted three turns of alpha-helix of Dictyostelium myosin with that of the Chara myosin and found that the replacement enhanced the motility 2.6-fold without changing the ATPase activity so much. The result clearly showed the importance of interaction between the converter region and the lever arm alpha-helix for the efficient motility of myosin.  相似文献   

3.
Movement generated by the myosin motor is generally thought to be driven by distortion of an elastic element within the myosin molecule and subsequent release of the resulting strain. However, the location of this elastic element in myosin remains unclear. The myosin motor domain consists of four major subdomains connected by flexible joints. The SH1 helix is the joint that connects the converter subdomain to the other domains, and is thought to play an important role in arrangements of the converter relative to the motor. To investigate the involvement of the SH1 helix in elastic distortion in myosin, we have introduced a point mutation into the SH1 helix of Dictyostelium myosin II (R689H), which in human nonmuscle myosin IIA causes nonsyndromic hereditary deafness, DFNA17. The mutation resulted in a significant impairment in motile activities, whereas actin-activated ATPase activity was only slightly affected. Single molecule mechanical measurements using optical trap showed that the step size was not shortened by the mutation, suggesting that the slower motility is caused by altered kinetics. The single molecule measurements demonstrated that the mutation significantly reduced cross-bridge stiffness. Motile activities produced by mixtures of wild-type and mutant myosins also suggested that the mutation affected the elasticity of myosin. These results suggest that the SH1 helix is involved in modulation of myosin elasticity, presumably by modulating the converter flexibility. Consistent with this, the mutation was also shown to reduce thermal stability and induce thermal aggregation of the protein, which might be implicated in the disease process.  相似文献   

4.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

5.
Myosin is a molecular motor and a member of a protein family comprising at least 18 classes. There is an about 1,000-fold difference in the in vitro sliding velocity between the fastest myosin and the slowest one. Previous studies revealed that the hydrophobic triplet in the motor domain (Val534, Phe535, and Pro536 in Dictyostelium myosin) is important for the strong binding of myosin to actin. We studied the role of the triplet in the sliding motion of myosin by means of site directed mutagenesis because the sliding velocity is determined by the time that myosin interacts with actin strongly. We produced mutant Dictyostelium myosins and subfragment-1s that have the triplet sequences of various classes of myosin with different sliding velocities. The V(max) and K(actin) values of the actin-activated ATPase for all these mutant subfragment-1s were lower than those of the wild-type Dictyostelium myosin. The mutant myosins exhibited much lower sliding velocities than the wild type. The time that the mutant subfragment-1s are in the strongly bound state did not correlate well with the sliding velocity. Our results suggested that (i) the hydrophobic triplet alone does not determine the sliding velocity of myosin, (ii) the size of the amino acid side chain in the triplet is crucial for the ATPase activity and the motility of myosin, and (iii) the hydrophobic triplet is important not only for strong binding to actin but also for the structural change of the myosin motor domain during the power stroke.  相似文献   

6.
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.  相似文献   

7.
R Batra  D J Manstein 《Biological chemistry》1999,380(7-8):1017-1023
We created a Dictyostelium discoideum myosin II mutant in which the highly conserved residue Trp-501 was replaced by a tyrosine residue. The mutant myosin alone, when expressed in a Dictyostelium strain lacking the functional myosin II heavy chain gene, supported cytokinesis and multicellular development, processes which require a functional myosin in Dictyostelium. Additionally, we expressed the W501 Y mutant in the soluble myosin head fragment M761-2R (W501Y-2R) to characterise the kinetic properties of the mutant myosin motor domain. The affinity of the mutant myosin for actin was approximately 6-fold decreased, but other kinetic properties of the protein were changed less than 2-fold by the W501Y mutation. Based on spectroscopic studies and structural considerations, Trp-501, corresponding to Trp-510 in chicken fast skeletal muscle myosin, has been proposed to be the primary ATP-sensitive tryptophanyl residue. Our results confirm these conclusions. While the wild-type construct displayed a 10% fluorescence increase, addition of ATP to W501Y-2R was not followed by an increase in tryptophan fluorescence emission.  相似文献   

8.
Myosin is the most comprehensively studied molecular motor that converts energy from the hydrolysis of MgATP into directed movement. Its motile cycle consists of a sequential series of interactions between myosin, actin, MgATP, and the products of hydrolysis, where the affinity of myosin for actin is modulated by the nature of the nucleotide bound in the active site. The first step in the contractile cycle occurs when ATP binds to actomyosin and releases myosin from the complex. We report here the structure of the motor domain of Dictyostelium discoideum myosin II both in its nucleotide-free state and complexed with MgATP. The structure with MgATP was obtained by soaking the crystals in substrate. These structures reveal that both the apo form and the MgATP complex are very similar to those previously seen with MgATPgammaS and MgAMP-PNP. Moreover, these structures are similar to that of chicken skeletal myosin subfragment-1. The crystallized protein is enzymatically active in solution, indicating that the conformation of myosin observed in chicken skeletal myosin subfragment-1 is unable to hydrolyze ATP and most likely represents the pre-hydrolysis structure for the myosin head that occurs after release from actin.  相似文献   

9.
Chemotactic stimulation of Dictyostelium cells results in a transient increase in cGMP levels, and transient phosphorylation of myosin II heavy and regulatory light chains. In Dictyostelium, two guanylyl cyclases and four candidate cGMP-binding proteins (GbpA- GbpD) are implicated in cGMP signalling. GbpA and GbpB are homologous proteins with a Zn2+-hydrolase domain. A double gbpA/gbpB gene disruption leads to a reduction of cGMP-phosphodiesterase activity and a 10-fold increase of basal and stimulated cGMP levels. Chemotaxis in gbpA(-)B(-) cells is associated with increased myosin II phosphorylation compared with wild-type cells; formation of lateral pseudopodia is suppressed resulting in enhanced chemotaxis. GbpC is homologous to GbpD, and contains Ras, MAPKKK and Ras-GEF domains. Inactivation of the gbp genes indicates that only GbpC harbours high affinity cGMP-binding activity. Myosin phosphorylation, assembly of myosin in the cytoskeleton as well as chemotaxis are severely impaired in mutants lacking GbpC and GbpD, or mutants lacking both guanylyl cyclases. Thus, a novel cGMP signalling cascade is critical for chemotaxis in Dictyostelium, and plays a major role in myosin II regulation during this process.  相似文献   

10.
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.  相似文献   

11.
The actin-dependent ATPase activity of Dictyostelium myosin II filaments is regulated by phosphorylation of the regulatory light chain. Four deletion mutant myosins which lack different parts of subfragment 2 (S2) showed phosphorylation-independent elevations in their activities. Phosphorylation-independent elevation in the activity was also achieved by a double point mutation to replace conserved Glu932 and Glu933 in S2 with Lys. These results suggested that inhibitory interactions involving the head and S2 are required for efficient regulation. Regulation of wild-type myosin was not affected by copolymerization with a S2 deletion mutant myosin in the same filaments. Furthermore, the activity linearly correlated with the fraction of phosphorylated molecules in wild-type filaments. These latter two results suggest that the inhibitory head-tail interactions are primarily intramolecular.  相似文献   

12.
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.  相似文献   

13.
The Dictyostelium class I myosins, MyoA, -B, -C, and -D, participate in plasma membrane-based cellular processes such as pseudopod extension and macropinocytosis. Given the existence of a high affinity membrane-binding site in the C-terminal tail domain of these motor proteins and their localized site of action at the cortical membrane-cytoskeleton, it was of interest to determine whether each myosin I was directly associated with the plasma membrane. The membrane association of a myosin I heavy chain kinase that regulates the activity of one of the class I myosins, MyoD was also examined. Cellular fractionation experiments revealed that the majority of the Dicyostelium MyoA, -B, -C and -D heavy chains and the kinase are cytosolic. However, a small, but significant, fraction (appr. 7. -15%) of each myosin I and the kinase was associated with the plasma membrane. The level of plasma membrane-associated MyoB, but neither that of MyoC nor MyoD, increases up to 2-fold in highly motile, streaming cells. These results indicate that Dictyostelium specifically recruits myoB to the plasma membrane during directed cell migration, consistent with its known role in pseudopod formation.  相似文献   

14.
We have investigated the folding of the myosin motor domain using a chimera of an embryonic striated muscle myosin II motor domain fused on its COOH terminus to a thermal stable, fast folding variant of green fluorescent protein (GFP). In in vitro expression assays, the GFP domain of the chimeric protein, S1(795)GFP, folds rapidly enabling us to monitor the folding of the motor domain using fluorescence. The myosin motor domain folds very slowly and transits through multiple intermediates that are detectable by gel filtration chromatography. The distribution of the nascent protein among these intermediates is strongly dependent upon temperature. At 25 degrees C and above the predominant product is an aggregate of S1(795)GFP or a complex with other lysate proteins. At 0 degrees C, the motor domain folds slowly via an energy independent pathway. The unusual temperature dependence and slow rate suggests that folding of the myosin motor is highly susceptible to off-pathway interactions and aggregation. Expression of the S1(795)GFP in the C2C12 muscle cell line yields a folded and functionally active protein that exhibits Mg(2+)ATP-sensitive actin-binding and myosin motor activity. In contrast, expression of S1(795)GFP in kidney epithelial cell lines (human 293 and COS 7 cells) results in an inactive and aggregated protein. The results of the in vitro folding assay suggest that the myosin motor domain does not fold spontaneously under physiological conditions and probably requires cytosolic chaperones. The expression studies support this conclusion and demonstrate that these factors are optimized in muscle cells.  相似文献   

15.
Analysis of the three-dimensional crystal structure of the Dictyostelium myosin motor domain revealed that the myosin head is required to bend at residues Ile-455 and Gly-457 to produce the conformation changes observed in the ternary complexes that resemble the pre- and post-hydrolysis states (Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., and Rayment, I. (1995) Biochemistry 34, 8960-8972). Asp-454, Ile-455, and Gly-457 of smooth muscle myosin were substituted by Ala, Met, and Ala, respectively, and the mechano-enzymatic activities were determined to study the role of these residues in myosin motor function. Whereas the basal steady-state Mg2+-ATPase activity of D454A was higher than that of the wild type, the rate of the hydrolytic step is reduced approximately 2,000-fold and becomes rate-limiting. M-ATP rather than M-ADP-P is the predominant steady-state intermediate, and the initial Pi burst and the ATP-induced enhancement of intrinsic tryptophan fluorescence are absent in D454A. D454A binds actin in the absence of ATP but is not dissociated from actin by ATP. Moreover, actin inhibits rather than activates the ATPase activity; consequently, D454A does not support actin translocating activity. I455M has normal actin-activated ATPase activity, Pi burst, and ATP-induced enhancement of intrinsic tryptophan fluorescence, suggesting that the enzymatic properties are normal. However, the actin translocating activity was completely inhibited. This suggests that the side chain at Ile-455 is critical for myosin motor activity but not for relatively normal enzymatic function, which indicates an apparent uncoupling between enzymatic activity and motile function. Although G457A has normal ATP-dependent actin dissociation, ATP hydrolytic step is reduced by approximately 10(5)-fold in the presence or absence of actin; consequently, G457A does not have actin translocating activity. These results indicate the importance of these conserved residues at the hinge region for normal myosin motor function.  相似文献   

16.
Total internal reflection fluorescence microscopy revealed how individual bipolar myosin II filaments accumulate at the equatorial region in dividing Dictyostelium cells. Direct observation of individual filaments in live cells provided us with much convincing information. Myosin II filaments accumulated at the equatorial region by at least two independent mechanisms: (i) cortical flow, which is driven by myosin II motor activities and (ii) de novo association to the equatorial cortex. These two mechanisms were mutually redundant. At the same time, myosin II filaments underwent rapid turnover, repeating their association and dissociation with the actin cortex. Examination of the lifetime of mutant myosin filaments in the cortex revealed that the turnover mainly depended on heavy chain phosphorylation and that myosin motor activity accelerated the turnover. Double mutant myosin II deficient in both motor and phosphorylation still accumulated at the equatorial region, although they displayed no cortical flow and considerably slow turnover. Under this condition, the filaments stayed for a significantly longer time at the equatorial region than at the polar regions, indicating that there are still other mechanisms for myosin II accumulation such as binding partners or stabilizing activity of filaments in the equatorial cortex.  相似文献   

17.
A full-length cDNA corresponding to the Dictyostelium myosin light chain kinase gene has been isolated and characterized. Sequence analysis of the cDNA confirms conserved protein kinase subdomains and reveals that the Dictyostelium sequence is highly homologous to those of calcium/calmodulin-dependent protein kinases, including myosin light chain kinases from higher eukaryotes. Despite the high homologies to calcium/calmodulin-dependent protein kinases, there is no recognizable calmodulin-binding domain within the Dictyostelium sequence. However, the Dictyostelium myosin light chain kinase possesses a putative auto-inhibitory domain near its carboxyl terminus. To further characterize this domain, the full-length enzyme as well as a truncated form lacking this domain were expressed in bacterial cells and purified. The full-length enzyme expressed in bacteria exhibits essentially the same biochemical characteristics as the enzyme isolated from Dictyostelium. The truncated form however exhibits a Vmax that is approximately ten times greater than that of the native enzyme. In addition, unlike the native kinase and the full-length kinase expressed in bacteria, the truncated enzyme does not undergo autophosphorylation. These results suggest that the Dictyostelium enzyme, like myosin light chain kinases from higher eukaryotes, is regulated by an autoinhibitory domain but that the specific molecular signals necessary for activation of the Dictyostelium enzyme are entirely distinct.  相似文献   

18.
We used molecular genetic approaches to delete 521 amino acid residues from the proximal portion of the Dictyostelium myosin II tail. The deletion encompasses approximately 40% of the tail, including the S2-LMM junction, a region that in muscle myosin II has been proposed to be important for contraction. The functions of the mutant myosin II are indistinguishable from the wild-type myosin II in our in vitro assays. It binds to actin in a typical rigor configuration in the absence of ATP and it forms filaments in a normal salt-dependent manner. In an in vitro motility assay, both monomeric and filamentous forms of the mutant myosin II translocate actin filaments at 2.4 microns/s at 30 degrees C, similar to that of wild-type myosin II. The mutant myosin II is also functional in vivo. Cells expressing the mutant myosin II in place of the native myosin II perform myosin II-dependent activities such as cytokinesis and formation of fruiting bodies, albeit inefficiently. Growth of the mutant cells in suspension gives rise to many large multinucleated cells, demonstrating that cytokinesis often fails. The majority of the fruiting bodies are also morphologically abnormal. These results demonstrate that this region of the myosin II tail is not required for motile activities but its presence is necessary for optimum function in vivo.  相似文献   

19.
Two types of myosin isolated from ordinary (fast) and dark (slow) muscles of carp were examined by ATPase and in vitro motility assays. Vmax of the ATPase activity and sliding velocity of ordinary myosin showed 1.6 and 1.5 times higher activities than those of dark myosin, whereas those of mammalian fast myosin were much higher, 3 to 10 times, than those of slow myosin. Although ordinary myosin had almost identical activities to those of mammalian fast myosin, activities of dark myosin was twice of those of mammalian slow myosin. This high motile activity of dark myosin can account for the physiological role of dark muscle in cruising of fish. By comparing Km of the actin-activated ATPase activity, ordinary myosin was appeared to have higher affinity to F-actin than dark myosin, and this was confirmed by the binding assay of HMM or S-1 of carp myosin to F-actin. Investigation of myosin assembly by electron microscopy and the centrifugation assay revealed that ordinary myosin assembled much poorly than dark myosin or mammalian fast myosin. This phenomenon may reflect characteristic cellular function of fish skeletal muscle.  相似文献   

20.
The SH1 helix is a joint that links the converter subdomain to the rest of the myosin motor domain. Recently, we showed that a mutation within the SH1 helix in Dictyostelium myosin II (R689H) reduced the elasticity and thermal stability of the protein. To reveal the involvement of the SH1 helix in ATP-dependent conformational changes of the motor domain, we have investigated the effects of the R689H mutation on the conformational changes of the converter, using a GFP-based fluorescence resonance energy transfer method. Although the mutation does not seem to strongly affect conformations, we found that it significantly reduced the activation energy required for the ATP-induced conformational transition corresponding to the recovery stroke. Given the effects of the mutation on the mechanical properties of myosin, we propose that the SH1 helix plays an important role in the mechanochemical energy conversion underlying the conformational change of the myosin motor domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号