首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Good–Turing frequency estimation (Good, 1953 ) is a simple, effective method for predicting detection probabilities of objects of both observed and unobserved classes based on observed frequencies of classes in a sample. The method has been used widely in several disciplines, such as information retrieval, computational linguistics, text recognition, and ecological diversity estimation. Nevertheless, existing studies assume sampling with replacement or sampling from an infinite population, which might be inappropriate for many practical applications. In light of this limitation, this article presents a modification of the Good–Turing estimation method to account for finite population sampling. We provide three practical extensions of the modified method, and we examine performance of the modified method and its extensions in simulation experiments.  相似文献   

2.
An exact test of the Hardy-Weinberg law.   总被引:4,自引:0,他引:4  
W Chapco 《Biometrics》1976,32(1):183-189
An exact distribution of a finite sample drawn from an infinite population in Hardy-Weinberg Equilibrium is described for k-alleles. Accordingly, an exact test of the law is presented and compared with two x2-tests for two and three alleles. For two alleles, it is shown that the "classical" c2-test is very adequate for sample sizes as small as ten. For three alleles, it is shown that a simpler formulation based on Leven's distribution approximates the exact test of this paper rather closely. However, it is recommended that researchers continue to employ the standard x2-test for all sample sizes and abide by it if the corresponding probability value is not "too close" to the critical level; otherwise, an exact test should be used.  相似文献   

3.
A variety of results for genealogical and line-of-descent processes that arise in connection with the theory of some classical selectively neutral population genetics models are reviewed. While some new results and derivations are included, the principle aim is to demonstrate the central importance and simplicity of genealogical Markov chains in this theory. Considerable attention is given to “diffusion time scale” approximations of such genealogical processes. A wide variety of results pertinent to (diffusion approximations of) the classical multiallele single-locus Wright-Fisher model and its relatives are simplified and unified by this approach. Other examples where such genealogical processes play an explicit role, such as the infinite sites and infinite alleles models, are discussed.  相似文献   

4.
Classical replicator dynamics assumes that individuals play their games and adopt new strategies on a global level: Each player interacts with a representative sample of the population and if a strategy yields a payoff above the average, then it is expected to spread. In this article, we connect evolutionary models for infinite and finite populations: While the population itself is infinite, interactions and reproduction occurs in random groups of size N. Surprisingly, the resulting dynamics simplifies to the traditional replicator system with a slightly modified payoff matrix. The qualitative results, however, mirror the findings for finite populations, in which strategies are selected according to a probabilistic Moran process. In particular, we derive a one-third law that holds for any population size. In this way, we show that the deterministic replicator equation in an infinite population can be used to study the Moran process in a finite population and vice versa. We apply the results to three examples to shed light on the evolution of cooperation in the iterated prisoner’s dilemma, on risk aversion in coordination games and on the maintenance of dominated strategies.  相似文献   

5.
Dupuis JA  Schwarz CJ 《Biometrics》2007,63(4):1015-1022
This article considers a Bayesian approach to the multistate extension of the Jolly-Seber model commonly used to estimate population abundance in capture-recapture studies. It extends the work of George and Robert (1992, Biometrika79, 677-683), which dealt with the Bayesian estimation of a closed population with only a single state for all animals. A super-population is introduced to model new entrants in the population. Bayesian estimates of abundance are obtained by implementing a Gibbs sampling algorithm based on data augmentation of the missing data in the capture histories when the state of the animal is unknown. Moreover, a partitioning of the missing data is adopted to ensure the convergence of the Gibbs sampling algorithm even in the presence of impossible transitions between some states. Lastly, we apply our methodology to a population of fish to estimate abundance and movement.  相似文献   

6.
We present a revision of Maynard Smith's evolutionary stability criteria for populations which are very large (though technically finite) and of unknown size. We call this the large population ESS, as distinct from Maynard Smith's infinite population ESS and Schaffer's finite population ESS. Building on Schaffer's finite population model, we define the large population ESS as a strategy which cannot be invaded by any finite number of mutants, as long as the population size is sufficiently large. The large population ESS is not equivalent to the infinite population ESS: we give examples of games in which a large population ESS exists but an infinite population ESS does not, and vice versa. Our main contribution is a simple set of two criteria for a large population ESS, which are similar (but not identical) to those originally proposed by Maynard Smith for infinite populations.  相似文献   

7.
In this paper, a new systematic sampling scheme with Markovian behaviour which yields positive first order inclusion probabilities for all units and positive second order inclusion probabilities for all pairs of units is introduced. The suggested method has been compared with sample random sampling, stratified random sampling, linear systematic sampling and systematic sampling with two random starts for the populations exhibiting exponential trend, autocorrelatedness and randomness. Throughout the discussion, the sample size is assumed to be even and the population size is a multiple of the sample size. The suggested method works well for estimating a finite population total for the population exhibiting exponential trend.  相似文献   

8.
All ways in which all matings in a population can be between half-sibs under a generalization of regular systems of inbreeding are characterized for both finite and infinite populations. A model of random half-sib mating is developed and analyzed, and the asymptotic configuration of populations subject to it is described. The classical model of half-sib mating which ensues from the standard definition of regular systems of inbreeding is only one of many ways a population can propagate by half-sib mating, and a wide range of genetic identity is possible dependent on which half-sib mating structure governs a population.  相似文献   

9.
An exact test for Hardy-Weinberg and multiple alleles   总被引:8,自引:0,他引:8  
E J Louis  E R Dempster 《Biometrics》1987,43(4):805-811
Algorithms for generating the exact distribution of a finite sample drawn from a population in Hardy-Weinberg equilibrium are given for multiple alleles. The finite sampling distribution is derived analogously to Fisher's 2 X 2 exact distribution and is equivalent to Levene's conditional finite sampling distribution for Hardy-Weinberg populations. The algorithms presented are fast computationally and allow for quick alternatives to standard methods requiring corrections and approximations. Computation time is on the order of a few seconds for three-allele examples and up to 2 minutes for four-allele examples on an IBM 3081 machine.  相似文献   

10.
Inverse Adaptive Cluster Sampling   总被引:3,自引:0,他引:3  
Consider a population in which the variable of interest tends to be at or near zero for many of the population units but a subgroup exhibits values distinctly different from zero. Such a population can be described as rare in the sense that the proportion of elements having nonzero values is very small. Obtaining an estimate of a population parameter such as the mean or total that is nonzero is difficult under classical fixed sample-size designs since there is a reasonable probability that a fixed sample size will yield all zeroes. We consider inverse sampling designs that use stopping rules based on the number of rare units observed in the sample. We look at two stopping rules in detail and derive unbiased estimators of the population total. The estimators do not rely on knowing what proportion of the population exhibit the rare trait but instead use an estimated value. Hence, the estimators are similar to those developed for poststratification sampling designs. We also incorporate adaptive cluster sampling into the sampling design to allow for the case where the rare elements tend to cluster within the population in some manner. The formulas for the variances of the estimators do not allow direct analytic comparison of the efficiency of the various designs and stopping rules, so we provide the results of a small simulation study to obtain some insight into the differences among the stopping rules and sampling approaches. The results indicate that a modified stopping rule that incorporates an adaptive sampling component and utilizes an initial random sample of fixed size is the best in the sense of having the smallest variance.  相似文献   

11.
In an attempt to estimate a finite population mean under the predictive approach described in Basu (1971) through the product method of estimation, we created a new product-type estimator for a two-stage sampling procedure. We also report a simulation study that is made in order to understand better the performance of the new estimator compared to the classical product estimator.  相似文献   

12.
Four different nomograms were devised to obtain a necessary, minimum sample size at a 95% confidence rate when data were distributed normally. They corresponded to four different cases, the population of which was either infinite or finite and the permitted error of which was either mu--m or mu--m/s, where mu was population mean, m sample mean and s sample standard deviation. They could also be used for obtaining the confidence limits of the population mean from the data after having carried out a work.  相似文献   

13.
14.
We develop a Bayesian approach to sample size computations for surveys designed to provide evidence of freedom from a disease or from an infectious agent. A population is considered "disease-free" when the prevalence or probability of disease is less than some threshold value. Prior distributions are specified for diagnostic test sensitivity and specificity and we test the null hypothesis that the prevalence is below the threshold. Sample size computations are developed using hypergeometric sampling for finite populations and binomial sampling for infinite populations. A normal approximation is also developed. Our procedures are compared with the frequentist methods of Cameron and Baldock (1998a, Preventive Veterinary Medicine34, 1-17.) using an example of foot-and-mouth disease. User-friendly programs for sample size calculation and analysis of survey data are available at http://www.epi.ucdavis.edu/diagnostictests/.  相似文献   

15.
16.
The paper deals with the use of appropriate sampling scheme for estimating the means of a finite bivariate population. The conditions have been obtained for choosing from the two sampling schemes, one being the observing of same sampling units for both the characters and the other being observing first character alone for a part of the sample, second character alone for another part of the sample and observing both the characters together on some other part of the sample.  相似文献   

17.
It is well known for direct response surveys (DR), where the responses are obtained from the respondents directly, that the sample mean, based on distinct units of a simple random sample selected with replacement (SRSWR) method, is more efficient than the sample mean based on all the units including repetition. In this paper, it is shown that a linear unbiased estimator based on distinct units is inadmissible for estimating a finite population mean when the sample is selected by an arbitrary with replacement (WR) sampling scheme and the responses are obtained independently by some RR technique. Efficiencies for a few linear unbiased estimators are compared under SRSWR sampling.  相似文献   

18.
There is a long tradition in population genetics of exploring the maintenance of variation under migration-selection balance using deterministic models that assume infinite population size. With finite population size, stochastic dynamics can greatly reduce the potential for the maintenance of polymorphism, but this has yet to be explored in detail. Here, classical two-patch models are extended to predict: (1) the probability of a locally beneficial mutation rising in frequency in the patch where it is favored and (2) the critical threshold migration rate above which the maintenance of polymorphism is much less likely. Individual-based simulations show that these approximations provide accurate predictions across a wide range of parameter space.  相似文献   

19.
Single nucleotide polymorphism (SNP) data can be used for parameter estimation via maximum likelihood methods as long as the way in which the SNPs were determined is known, so that an appropriate likelihood formula can be constructed. We present such likelihoods for several sampling methods. As a test of these approaches, we consider use of SNPs to estimate the parameter Theta = 4N(e)micro (the scaled product of effective population size and per-site mutation rate), which is related to the branch lengths of the reconstructed genealogy. With infinite amounts of data, ML models using SNP data are expected to produce consistent estimates of Theta. With finite amounts of data the estimates are accurate when Theta is high, but tend to be biased upward when Theta is low. If recombination is present and not allowed for in the analysis, the results are additionally biased upward, but this effect can be removed by incorporating recombination into the analysis. SNPs defined as sites that are polymorphic in the actual sample under consideration (sample SNPs) are somewhat more accurate for estimation of Theta than SNPs defined by their polymorphism in a panel chosen from the same population (panel SNPs). Misrepresenting panel SNPs as sample SNPs leads to large errors in the maximum likelihood estimate of Theta. Researchers collecting SNPs should collect and preserve information about the method of ascertainment so that the data can be accurately analyzed.  相似文献   

20.
Lessard S 《Genetics》2007,177(2):1249-1254
An exact sampling formula for a Wright-Fisher population of fixed size N under the infinitely many neutral alleles model is deduced. This extends the Ewens formula for the configuration of a random sample to the case where the sample is drawn from a population of small size, that is, without the usual large-N and small-mutation-rate assumption. The formula is used to prove a conjecture ascertaining the validity of a diffusion approximation for the frequency of a mutant-type allele under weak selection in segregation with a wild-type allele in the limit finite-island model, namely, a population that is subdivided into a finite number of demes of size N and that receives an expected fraction m of migrants from a common migrant pool each generation, as the number of demes goes to infinity. This is done by applying the formula to the migrant ancestors of a single deme and sampling their types at random. The proof of the conjecture confirms an analogy between the island model and a random-mating population, but with a different timescale that has implications for estimation procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号