首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku''s affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.  相似文献   

3.
Shao Z  Davis AJ  Fattah KR  So S  Sun J  Lee KJ  Harrison L  Yang J  Chen DJ 《DNA Repair》2012,11(3):310-316
DNA double strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). The DNA cell cycle stage and resection of the DSB ends are two key mechanisms which are believed to push DSB repair to the HR pathway. Here, we show that the NHEJ factor Ku80 associates with DSBs in S phase, when HR is thought to be the preferred repair pathway, and its dynamics/kinetics at DSBs is similar to those observed for Ku80 in non-S phase in mammalian cells. A Ku homolog from Mycobacterium tuberculosis binds to and is retained at DSBs in S phase and was used as a tool to determine if blocking DNA ends affects end resection and HR in mammalian cells. A decrease in DNA end resection, as marked by IR-induced RPA, BrdU, and Rad51 focus formation, and HR are observed when Ku deficient rodent cells are complemented with Mt-Ku. Together, this data suggests that Ku70/80 binds to DSBs in all cell cycle stages and is likely actively displaced from DSB ends to free the DNA ends for DNA end resection and thus HR to occur.  相似文献   

4.
Ku is a heterodimer of polypeptides of approximately 70 and 80 kDa (Ku70 and Ku80, respectively) that binds to DNA ends. Mammalian cells lacking Ku are defective in DNA double-strand break (DSB) repair and in site-specific V(D)J recombination. Here, we describe the identification and characterisation of YKU80, the gene for the Saccharomyces cerevisiae Ku80 homologue. Significantly, we find that YKU80 disruption enhances the radiosensitivity of rad52 mutant strains, suggesting that YKU80 functions in a DNA DSB repair pathway that does not rely on homologous recombination. Indeed, through using an in vivo plasmid rejoining assay, we find that YKU80 plays an essential role in illegitimate recombination events that result in the accurate repair of restriction enzyme generated DSBs. Interestingly, in the absence of YKU80function, residual repair operates through an error-prone pathway that results in recombination between short direct repeat elements. This resembles closely a predominant DSB repair pathway in vertebrates. Together, our data suggest that multiple, evolutionarily conserved mechanisms for DSB repair exist in eukaryotes. Furthermore, they imply that Ku binds to DSBs in vivo and promotes repair both by enhancing accurate DNA end joining and by suppressing alternative error-prone repair pathways. Finally, we report that yku80 mutant yeasts display dramatic telomeric shortening, suggesting that, in addition to recognising DNA damage, Ku also binds to naturally occurring chromosomal ends. These findings raise the possibility that Ku protects chromosomal termini from nucleolytic attack and functions as part of a telomeric length sensing system.  相似文献   

5.
DNA non-homologous end joining, the major mechanism for the repair of DNA double-strands breaks (DSB) in mammalian cells requires the DNA-dependent protein kinase (DNA-PK), a complex composed of a large catalytic subunit of 460 kDa (DNA-PKcs) and the heterodimer Ku70–Ku80 that binds to double-stranded DNA ends. Mutations in any of the three subunits of DNA-PK lead to extreme radiosensitivity and DSB repair deficiency. Here we show that the 283 C-terminal amino acids of Ku80 introduced into the Chinese hamster ovary cell line CHO-K1 have a dominant negative effect. Expression of Ku(449–732) in CHO cells was verified by northern blot analysis and resulted in decreased Ku-dependent DNA end-binding activity, a diminished capacity to repair DSBs as determined by pulsed field gel electrophoresis and decreased radioresistance determined by clonogenic survival. The stable modifications observed at the molecular and cellular level suggest that this fragment of Ku80 confers a dominant negative effect providing an important mechanism to sensitise radioresistant cells.  相似文献   

6.
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). The choice between these two pathways is largely influenced by cell cycle phases. HDR can occur only in S/G2 when sister chromatid can provide homologous templates, whereas NHEJ can take place in all phases of the cell cycle except mitosis. Central to NHEJ repair is the Ku70/80 heterodimer which forms a ring structure that binds DSB ends and serves as a platform to recruit factors involved in NHEJ. Upon completion of NHEJ repair, DNA double strand-encircling Ku dimers have to be removed. The removal depends on ubiquitylation and proteasomal degradation of Ku80 by the ubiquitin E3 ligases RNF8. Here we report that RNF8 is a substrate of APCCdh1 and the latter keeps RNF8 level in check at DSBs to prevent premature turnover of Ku80.  相似文献   

7.
The role of Ku80 in the repair of DNA double-strand breaks (DSBs) was examined in fibroblasts derived from a Ku80 knockout mouse model described by Nussenzweig et al. (Nature 382, 551-555, 1996). Primary fibroblasts from Ku80+/+ and Ku80-/- mice were immortalized by transfection with plasmids containing either the human MYC proto-oncogene or the Simian virus 40 (SV40) T antigen and were used to measure induction and rejoining of DSBs after exposure to ionizing radiation. The number of DSBs in the cells was quantified by either asymmetric field-inversion gel electrophoresis (AFIGE) or clamped homogeneous electrical-field gel electrophoresis (CHEF). The latter method was introduced for a more reliable quantification of repair even when DNA degradation occurs in a fraction of the irradiated cell population during the postirradiation incubation time. The results confirm that Ku80-deficient mouse fibroblasts are sensitive to ionizing radiation and demonstrate that the increased radiosensitivity may result from a deficiency in DSB rejoining. The results further indicate that unless techniques are employed that allow for distinction between DNA degradation and DNA repair, erroneous conclusions may be drawn regarding the potential of cells to repair DSBs.  相似文献   

8.
Ku80 removal from DNA through double strand break-induced ubiquitylation   总被引:1,自引:0,他引:1  
The Ku70/Ku80 heterodimer, or Ku, is the central component of the nonhomologous end joining (NHEJ) pathway of double strand break (DSB) repair. Because Ku forms a ring through which the DSB threads, it likely becomes topologically attached to DNA during repair. The mechanism for its removal was unknown. Using a method to identify proteins recruited to DSBs in Xenopus laevis egg extract, we show that DSB-containing DNAs accumulate members of the Skp1-Cul1-F-box complex and K48-linked polyubiquitylated proteins in addition to known repair proteins. We demonstrate that Ku80 is degraded in response to DSBs in a ubiquitin-mediated manner. Strikingly, K48-linked polyubiquitylation, but not proteasomal degradation, is required for the efficient removal of Ku80 from DNA. This removal is DNA length dependent, as Ku80 is retained on duplex oligonucleotides. Finally, NHEJ completion and removal of Ku80 from DNA are independent from one another. We propose that DSB-induced ubiquitylation of Ku80 provides a mechanism to efficiently eliminate Ku from DNA for pre- and postrepair processes.  相似文献   

9.
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.  相似文献   

10.
Ku, the heterodimer of Ku70 and Ku80, plays an essential role in the DNA double-strand break (DSB) repair pathway, i.e., non-homologous end-joining (NHEJ). Two isoforms of Ku80 encoded by the same genes, namely, Ku80 and KARP-1 are expressed and function in primate cells, but not in rodent cells. Ku80 works as a heterodimer with Ku70. However, it is not yet clear whether KARP-1 forms a heterodimer with Ku70 and works as a heterodimer. Although KARP-1 appears to work in NHEJ, its physiological role remains unclear. In this study, we established and characterized EGFP-KARP-1-expressing xrs-6 cell lines, EGFP-KARP-1/xrs-6. We found that nuclear localization signal (NLS) of KARP-1 is localized in the C-terminal region. Our data showed that KARP-1 localizes within the nucleus in NLS-dependent and NLS-independent manner and forms a heterodimer with Ku70, and stabilizes Ku70. On the other hand, EGFP-KARP-1 could not perfectly complement the radiosensitivity and DSB repair activity of Ku80-deficient xrs-6 cells. Furthermore, KARP-1 could not accumulate at DSBs faster than Ku80, although EGFP-KARP-1 accumulates at DSBs. Our data demonstrate that the function of KARP-1 could not perfectly replace that of Ku80 in DSB repair, although KARP-1 has some biochemical properties, which resemble those of Ku80, and works as a heterodimer with Ku70. On the other hand, the number of EGFP-KARP-1-expressing xrs-6 cells showing pan-nuclear γ-H2AX staining significantly increases following X-irradiation, suggesting that KARP-1 may have a novel role in DSB response.  相似文献   

11.
Ku plays a key role in multiple nuclear processes, e.g., DNA double-strand break (DSB) repair. The regulation mechanism of the localizations of Ku70 and Ku80 plays a key role in regulating the multiple functions of Ku. Although numerous biochemical studies in vitro have elucidated the DNA binding mechanism of Ku, no accumulation mechanisms of Ku70 and Ku80 at DSBs have been clarified in detail in vivo. In this study, we examined the accumulation mechanism of Ku80 at DSBs in living cells. EGFP-Ku80 accumulation at DSBs began immediately after irradiation. On the other hand, our data show that Ku70 alone, which has DNA binding activity independent of Ku80, cannot accumulate at the DSBs, whereas Ku70 bound to Ku80 can. The deletion of the C-terminal DNA-PKcs-binding domain and the mutation at the SUMOylation site of Ku80 had no effect on Ku80 accumulation. Unexpectedly, N-terminal deletion mutants of Ku80 fully lost their accumulation activity, although the mutants retained their Ku70 binding activity. Altogether, these data demonstrate that Ku80 is essential for Ku70 accumulation at DSBs. Furthermore, three domains of Ku80, i.e., the N-terminal α/β, the DNA-binding, and Ku70-binding domains, seem to necessary for the accumulation at or recognition of DSBs in the early stage after irradiation.  相似文献   

12.
13.
Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents.  相似文献   

14.
Double strand break (DSB) recognition is the first step in the DSB damage response and involves activation of ataxia telangiectasia-mutated (ATM) and phosphorylation of targets such as p53 to trigger cell cycle arrest, DNA repair, or apoptosis. It was reported that activation of ATM- and Rad3-related (ATR) kinase by DSBs also occurs in an ATM-dependent manner. On the other hand, Ku70/80 is known to participate at a later time point in the DSB response, recruiting DNA-PKcs to facilitate non-homologous end joining. Because Ku70/80 has a high affinity for broken DNA ends and is abundant in nuclei, we examined their possible involvement in other aspects of the DSB damage response, particularly in modulating the activity of ATM and other phosphatidylinositol (PI) 3-related kinases during DSB recognition. We thus analyzed p53(Ser18) phosphorylation in irradiated Ku-deficient cells and observed persistent phosphorylation in these cells relative to wild type cells. ATM or ATR inhibition revealed that this phosphorylation is mainly mediated by ATM-dependent ATR activity at 2 h post-ionizing radiation in wild type cells, whereas in Ku-deficient cells, this occurs mainly through direct ATM activity, with a secondary contribution from ATR via a novel ATM-independent mechanism. Using ATM/Ku70 double-null cell lines, which we generated, we confirmed that ATM-independent ATR activity contributed to persistent phosphorylation of p53(Ser18) in Ku-deficient cells at 12 h post-ionizing radiation. In summary, we discovered a novel role for Ku70/80 in modulating ATM-dependent ATR activation during DSB damage response and demonstrated that these proteins confer a protective effect against ATM-independent ATR activation at later stages of the DSB damage response.  相似文献   

15.
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray scattering, reveal major structural reorganizations that choreograph NHEJ initiation. The Ku80 C-terminal region forms a flexible arm that extends from the DNA-binding core to recruit and retain DNA-PKcs at DSBs. Furthermore, Ku- and DNA-promoted assembly of a DNA-PKcs dimer facilitates trans-autophosphorylation at the DSB. The resulting site-specific autophosphorylation induces a large conformational change that opens DNA-PKcs and promotes its release from DNA ends. These results show how protein and DNA interactions initiate large Ku and DNA-PKcs rearrangements to control DNA-PK biological functions as a macromolecular machine orchestrating assembly and disassembly of the initial NHEJ complex on DNA.  相似文献   

16.
Wu D  Topper LM  Wilson TE 《Genetics》2008,178(3):1237-1249
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.  相似文献   

17.
18.
Non-homologous DNA end joining   总被引:9,自引:0,他引:9  
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.  相似文献   

19.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an enormous, 470-kDa protein serine/threonine kinase that has homology with members of the phosphatidylinositol (PI) 3-kinase superfamily. This protein contributes to the repair of DNA double-strand breaks (DSBs) by assembling broken ends of DNA molecules in combination with the DNA-binding factors Ku70 and Ku80. It may also serve as a molecular scaffold for recruiting DNA repair factors to DNA strand breaks. This study attempts to better define the role of protein kinase activity in the repair of DNA DSBs. We constructed a contiguous 14-kb human DNA-PKcs cDNA and demonstrated that it can complement the DNA DSB repair defects of two mutant cell lines known to be deficient in DNA-PKcs (M059J and V3). We then created deletion and site-directed mutations within the conserved PI 3-kinase domain of the DNA-PKcs gene to test the importance of protein kinase activity for DSB rejoining. These DNA-PKcs mutant constructs are able to express the protein but fail to complement the DNA DSB or V(D)J recombination defects of DNA-PKcs mutant cells. These results indicate that the protein kinase activity of DNA-PKcs is essential for the rejoining of DNA DSBs in mammalian cells. We have also determined a model structure for the DNA-PKcs kinase domain based on comparisons to the crystallographic structure of a cyclic AMP-dependent protein kinase. This structure gives some insight into which amino acid residues are crucial for the kinase activity in DNA-PKcs.  相似文献   

20.
Double-strand break (DSB) repair pathways catalyze the rejoining of broken chromosomes and the integration of transforming DNAs. These processes have been well characterized in bacteria, fungi, and animals. Plants are generally thought primarily to utilize a non-homologous end joining (NHEJ) pathway to repair DSBs and integrate transgenes, as transforming DNAs with large tracts of homology to the chromosome are integrated at random. In order to test the hypothesis that NHEJ is an important pathway for the repair of DSBs in plants, we isolated T-DNA insertion mutations in the Arabidopsis homologs of the Ku80 and DNA ligase IV genes, required for the initiation and completion, respectively, of NHEJ. Both mutants were hypersensitive to the cytostatic effects of gamma radiation, suggesting that NHEJ is indeed a critical pathway for the repair of DSBs. T-DNA insertion rates were also decreased in the mutants, indicating that Ku80 and DNA ligase IV play an important role in either the mechanism or the regulation of T-DNA integration in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号