首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Squalene synthase (SS) is the first committed enzyme for cholesterol biosynthesis, located at a branch point in the mevalonate pathway. To examine the role of SS in the overall cholesterol metabolism, we transiently overexpressed mouse SS in the livers of mice using adenovirus-mediated gene transfer. Overexpression of SS increased de novo cholesterol biosynthesis with increased 3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) reductase activity, in spite of the downregulation of its own mRNA expression. Furthermore, overexpression of SS increased plasma concentrations of LDL, irrespective of the presence of functional LDL receptor (LDLR). Thus, the hypercholesterolemia is primarily caused by increased hepatic production of cholesterol-rich VLDL, as demonstrated by the increases in plasma cholesterol levels after intravenous injection of Triton WR1339. mRNA expression of LDLR was decreased, suggesting that defective LDL clearance contributed to the development of hypercholesterolemia. Curiously, the liver was enlarged, with a larger number of Ki-67-positive cells. These results demonstrate that transient upregulation of SS stimulates cholesterol biosynthesis as well as lipoprotein production, providing the first in vivo evidence that SS plays a regulatory role in cholesterol metabolism through modulation of HMG-CoA reductase activity and cholesterol biosynthesis.  相似文献   

2.
Cholesterol 7 alpha-hydroxylase activity was completely inhibited by incubation with alkaline phosphatase in a reconstituted enzyme system containing a cytochrome P-450, NADPH-cytochrome P-450 reductase and phospholipid. On the other hand, cAMP-dependent protein kinase stimulated cholesterol 7 alpha-hydroxylase activity by 2.5-fold. The modulation of cholesterol 7 alpha-hydroxylase activity was dependent on the amount of phosphatase or kinase added. The phosphatase inhibited enzyme activity was partially reversed by the treatment with protein kinase. These experiments indicate that the reconstituted cholesterol 7 alpha-hydroxylase activity is reversibly regulated by phosphorylation/dephosphorylation mechanism.  相似文献   

3.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

4.
Hyperhomocysteinemia, an elevation of blood homocysteine levels, is a metabolic disorder associated with dysfunction of multiple organs. We previously demonstrated that hyperhomocysteinemia stimulated hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury. The liver plays an important role in cholesterol biosynthesis and overall homeostasis. HMG-CoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. Hepatic HMG-CoA reductase is a major target for lowering cholesterol levels in patients with hypercholesterolemia. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on hepatic cholesterol biosynthesis in hyperhomocysteinemic rats and to identify the underlying mechanism. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. HMG-CoA reductase activity was markedly elevated in the liver of hyperhomocysteinemic rats, which was accompanied by hepatic lipid accumulation. Activation of HMG-CoA reductase was caused by an increase in its gene expression and a reduction in its phosphorylation (an inactive form of the enzyme). Treatment of hyperhomocysteinemic rats with berberine for 5 days inhibited HMG-CoA reductase activity and reduced hepatic cholesterol content. Such an inhibitory effect was mediated by increased phosphorylation of HMG-CoA reductase. Berberine treatment also improved liver function. These results suggest that berberine regulates hepatic cholesterol biosynthesis via increased phosphorylation of HMG-CoA reductase. Berberine may be therapeutically useful for the management of cholesterol homeostasis.  相似文献   

5.
Under most experimental conditions, there is a covariation between the rate-limiting enzyme in cholesterol biosynthesis, HMG-CoA reductase, and the rate-limiting enzyme in bile acid biosynthesis, cholesterol 7 alpha-hydroxylase. The most simple explanation for the coupling between the two enzymes is that newly synthesized cholesterol is a substrate for an unsaturated cholesterol 7 alpha-hydroxylase and that substrate availability is of major regulatory importance for this enzyme. The following results seem, however, to rule out that such a simple regulatory mechanism is of major importance and that HMG-CoA reductase activity per se is of importance in the regulation of cholesterol 7 alpha-hydroxylase. 1) The apparent degree of saturation of cholesterol 7 alpha-hydroxylase, as measured in vitro in rat liver microsomes, was found to be relatively high (70-90%) under most experimental conditions, including starvation, cholestyramine treatment, and cholesterol treatment. A significant decrease in the degree of saturation was obtained first after a drastic reduction of total concentration of cholesterol in the microsomes by treatment with high doses of triparanol, an inhibitor of cholesterol biosynthesis. 2) The stimulatory effect of cholesterol feeding on cholesterol 7 alpha-hydroxylase activity in rats seems to be an effect on the enzyme activity (enzyme induction?) rather than an effect on substrate availability. Thus, the stimulatory effect of cholesterol feeding was retained also after almost complete removal of the endogenous cholesterol by extraction with acetone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of feeding cholesterol, sitosterol, and lovastatin on cholesterol absorption, biosynthesis, esterification, and LDL receptor function were examined in the rat jejunal mucosa. Cholesterol absorption was measured by the dual-isotope plasma ratio method; the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, was measured as total and expressed enzyme activities (in the absence and presence of a phosphatase inhibitor, NaF, respectively); mucosal total and esterified cholesterol concentrations were determined by gas-liquid chromatography; LDL receptor function was assayed as receptor-mediated binding of (125)I-labeled LDL to mucosal membranes. Feeding 2% sitosterol or 0.04% lovastatin for 1 week significantly (P < 0.01) decreased the amounts of cholesterol absorbed per day (-85% and -63%, respectively). In contrast, feeding 2% cholesterol for 1 week increased the amounts of absorbed cholesterol 27-fold, even though the percent absorption significantly decreased. With all three treatments, there was a coordinate regulation of total HMG-CoA reductase activity and receptor-mediated LDL binding. Cholesterol feeding downregulated both total jejunal HMG-CoA reductase activity (P < 0.05) and receptor-mediated LDL binding (P < 0.01), whereas lovastatin- and sitosterol-supplemented diets significantly upregulated both of these parameters. In the control, cholesterol-fed, and sitosterol-fed animals, about half of the total jejunal HMG-CoA reductase activity was expressed (in functional dephosphorylated form). However, in the lovastatin-treated rats with 4-fold stimulation of HMG-CoA reductase, only 23% of the total enzyme activity was expressed. Changes in total HMG-CoA reductase activity and receptor-mediated LDL binding in all tested groups occurred with no change in total concentrations of mucosal cholesterol, and only cholesterol-fed animals had increased mucosal esterified cholesterol concentrations. Thus, in response to various fluxes of dietary or newly formed cholesterol, HMG-CoA reductase and receptor-mediated LDL binding are coordinately regulated to maintain constant cellular cholesterol concentrations in the jejunum.  相似文献   

7.
Rat hepatocytes isolated by the procedure described here showed 3-hydroxy-3-methylglutaryl-CoA reductase activity in the range of that reported for rat liver at the maximum of the circadian cycle, even if they were taken from rats at the time of the minimum. The enzyme was present in cells as both its active dephosphorylated (20 +/- 8%) and the inactive phosphorylated forms. The enzyme activity and the ratio between the two forms were unaltered during 3 h of cell incubation. 25-Hydroxycholesterol (50 microM) induced about 50% inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity during 1 h incubation but the relative amount of the two forms was not modified by the sterol. Cells isolated by the described procedure may therefore be a useful tool in studies on the regulation of cholesterol neogenesis, both through the synthesis of the enzyme, which can be shown by measuring the activity after complete dephosphorylation of the enzyme, and via the rapid reversible shift of the inactive to the active form, resulting from the ratio between the two enzyme forms. The latter mechanism for the modulation of cholesterol synthesis cannot be tested in cell cultures because full activation of the enzyme occurs during hepatocyte plating.  相似文献   

8.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   

9.
Cholesterol synthesis and 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase) in the liver of rats at various times (7, 22, 45 and 314 days) after injection with the carcinogen, methylazoxymethanol acetate (MAMA) is reported. Seven days after treatment, an increase in both cholesterol synthesis and HMG-CoA reductase activity was observed. Elevated HMG-CoA reductase activity and reduced dietary feedback was present 22 days after carcinogen. Cholesterol synthesis was normal at this time but dietary cholesterol failed to significantly reduce synthesis. Forty-five days after carcinogen both cholesterol synthesis and HMG-CoA reductase activity had returned to normal. Both parameters were normal 314 days after carcinogen. The enzyme gamma-glutamyl transferase was also elevated at 7, 22 and 314 days. These results indicate that HMG-CoA reductase activity and cholesterol synthesis exhibit different regulatory characteristics during the early stages of hepatocarcinogenesis initiated by MAMA injection.  相似文献   

10.
Results from several laboratories clearly indicate that expression of scavenger receptor class B type I (SR-BI) enhances the bidirectional flux of cholesterol between cells and lipoproteins. Because the activity of HMG-CoA reductase, the key enzyme in cholesterol biosynthesis, is regulated by cell cholesterol content, we designed experiments to investigate the effect of SR-BI expression on the activity of this enzyme and on net cellular cholesterol mass. In addition, we compared the function of SR-BI with its human homolog, CD36 and LIMPII analogous 1. Our experiments demonstrate that both receptors enhance the flux of unesterified or free cholesterol bidirectionally, down a concentration gradient. Receptor-mediated cholesterol flux can effectively modulate multiple aspects of cellular cholesterol metabolism, including the pool that regulates the activity of HMG-CoA reductase. We also found that constitutive expression of SR-BI alters the steady state level of cellular cholesterol and phospholipid when SR-BI-expressing cells are maintained in medium containing serum lipoproteins. All of these effects are proportional to the level of receptor on the cell surface. These data indicate that the level of SR-BI expression determines both the rate of free cholesterol flux and the steady state level of cellular cholesterol.  相似文献   

11.
Cyclic AMP has been implicated to a greater or lesser extent in the regulation of four key enzymes which interact to regulate intracellular cholesterol metabolism; HMG CoA reductase; ACAT; cholesteryl ester hydrolase; and cholesterol 7 alpha hydroxylase. The relationship between these enzymes and the sites where current evidence suggests that cyclic AMP may be involved are summarized in Fig. 3. Cholesterol 7 alpha hydroxylase controls the catabolism of cholesterol to bile acids in the liver, and thus its removal from the body via the bile, but does not have a major role in cholesterol metabolism in extrahepatic tissues. It is clear that cyclic AMP is able to influence the activity of this enzyme in liver sub-cellular fractions and isolated hepatocytes in vitro, and studies in our laboratory have shown that changes in Ca2+ fluxes within the cell may be important in its mechanism of action. Whether or not the cyclic nucleotide has a role regulating cholesterol 7 alpha hydroxylase activity in vivo, however, is not known. HMG CoA reductase is inactivated by phosphorylation both in vitro and in vivo, but although cyclic AMP and glucagon have been shown to inhibit the enzyme, cyclic AMP-dependent protein kinase is not directly involved. The exact mechanism by which the cyclic nucleotide influences the system remains unclear, but it may be related to activation of microsomal phosphatases. The activity of ACAT has been shown to be modulated by phosphorylation in a number of tissues in vitro, but the involvement of cyclic AMP has not been unequivocally demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The activities of neutral cholesterol esterase and acyl-CoA : cholesterol acyltransferase in rat adrenal gland were measured at various time intervals over 24 h. The activity of cholesterol esterase displayed diurnal rhythm, with a major peak at the onset of darkness coinciding with the peak in the diurnal rhythm of plasma corticosterone concentration. The activity of acyl-CoA : cholesterol acyltransferase also exhibited a characteristic diurnal rhythm, with the minimum activity occurring 3 h after the onset of darkness. The profile of the rhythm exhibited by the activity of the esterifying enzyme was similar to the mirror image of the pattern of diurnal rhythm in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase. Microsomal non-esterified cholesterol showed a gradual decline with a significant decrease in concentration at the onset of darkness, thus suggesting that diurnal removal of cholesterol in the environment of the esterifying enzyme and hydroxymethylglutaryl-CoA reductase leads to such diurnal decrease or increase in the activities of these two enzymes. Acute administration of corticotropin led to a 3-fold increase in the activity of cholesterol esterase, a 50% decrease in the activity of acyl-CoA : cholesterol acyltransferase and a 2-fold increase in the activity of hydroxymethylglutaryl-CoA reductase. Corticotropin administration also resulted in a significant decrease in microsomal non-esterified cholesterol and increase in plasma corticosterone concentration. These observations suggest that corticotropin plays an important part in generating the diurnal rhythm in the activities of the three enzymes.  相似文献   

14.
Pure cholesterol associated in complexes with lipoproteins (whole serum and human low density lipoproteins) or esterified with succinic acid (cholesteryl succinate) and bound to albumin effectively suppresses 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in hepatoma tissue culture (HTC) cells grown in lipoprotein-poor serum medium during short 4-hour) incubation periods. Simultaneous measurments of the kinetics of uptake of radioactive unesterified cholesterol of whole serum and cholesteryl succinate, their conversion to lipid products, and the decay in enzyme activity, suggest that the cholesterol-induced suppression is mediated by the sterol itself rather than by inhibitory lipid products derived from its metabolism. Several cholesterol derivatives such as cholestenone, 7-ketocholesterol, and 7alpha-and 25-hydroxycholesterol also suppress reductase activiy in HTC cells and are significantly more inhibitory than the pure cholesterol preparations. The decrease in enzyme activity produced by cholesterol and its derivatives is concentration-dependent and specific. [1-14C]Oleate incorporation experiments indicate that cholesterol ester formation in HTC cells is not increased at inhibitory concentrations of the steroids. These data suggest that sterol ester formation is not an obligatory process in the feedback control of HMG-CoA reductase activity. The half-life of the reductase (3 to 4 hours) is not significantly changed by cycloheximide, plus or minus whole serum, and cholesteryl succinate. In contrast, the half-life is strongly reduced when HTC cells are incubated with cycloheximide plus maximal concentrations of 25-hydroxycholesterol, 7-ketocholesterol, or cholestenone, resulting in t1/2 values of 24, 36, and 60 min, respectively. Increasing concentrations of whole serum and cholesteryl succinate have no significant effect on the apparent rate constant of inactivation of the enzyme, whereas its apparent rate of synthesis is decreased 3- and 10-fold, respectively. These results are reversed with oxygenated steroid inhibitors. The rate of synthesis of reductase is essentially unchanged as the concentrations of 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone are increased in the culture medium, whereas the apparent rate constant for degradation is increased 9-, 7-, and 3-fold, respectively. HMG-CoA reductase activity in HTC cells thus appears to be modulated by two different mechanisms in which steroid structure is important. Whole serum and cholesteryl succinate specifically decrease the rate of enzyme synthesis, while 25-hydroxycholesterol, 7-ketocholesterol, and cholestenone increase the rate of inactivation of the reductase.  相似文献   

15.
Previous studies have established that under normal conditions, adrenal HMG-CoA reductase activity is higher in hamsters than in rats and humans. The hamster reductase activity follows a diurnal rhythm corresponding to that of plasma ACTH and glucocorticoids [Endocrinology 107 (1980) 215] but not to that of aldosterone. ACTH treatments to hamsters increased reductase activity after a latency of 60 min; this enhancement was prevented by cycloheximide [J. steroid Biochem. 24 (1986) 325]. Immunotitration and immunoblotting studies confirmed that ACTH caused an increase in reductase protein synthesis. In rats, long-term (1-9 days) and short-term (3 h) treatments with ACTH also induced increase in adrenal HMG-CoA reductase activity and reductase protein. In the presence of iodoacetamide and inhibitors of proteolytic enzyme, a main specific band of enzyme was evinced in the area of 102 +/- 6 kDaMr, by Western blotting, for both hamster homogenate and microsomal preparations (Endocrinology, 120 (1987]. Similarly Mr values were found with rat adrenal preparations. The concentration of mRNA, analyzed using the c-DNA pRed-10 coding for the Chinese hamster ovary reductase, was increased in adrenals of hamsters treated with ACTH. The reductase mRNA levels also fluctuated during the day in parallel with those of reductase activity and reductase protein. In conclusion, these results indicate that ACTH and other conditions inducing a change in hamster adrenal HMG-CoA reductase activity provoke parallel changes in reductase mRNA and reductase protein content. ACTH acts on the adrenal reductase of species synthesizing large as well as small quantities of cholesterol, thus indicating the general importance of this hormonal control.  相似文献   

16.
17.
A water-soluble derivative of cholesterol, methoxypolyoxyethylated (MPOE) cholesterol, has been synthesized and used to study the regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key regulatory enzyme in cholesterol biosynthesis. MPOE cholesterol causes a specific, rapid and linear decline in HMG-CoA reductase in cultured rat liver cells. MPOE cholesterol is not a direct allosteric inhibitor of HMG-CoA reductase, does not appear to regulate HMG-CoA reductase through changes in membrane environment, and does not change the phosphorylation state and level of activation of rat liver cell HMG-CoA reductase. In order to confirm our data, which were consistent with a model in which MPOE cholesterol regulates the amount of HMG-CoA reductase and not its activity, we made direct measurements of reductase mRNA levels. The decline in HMG-CoA reductase in MPOE cholesterol-treated rat liver cells is preceded by the rapid disappearance of HMG-CoA reductase mRNA. As a water-soluble cholesterol derivative, MPOE cholesterol represents a useful model compound for studies on the regulation of the level of HMG-CoA reductase and its cognate mRNA.  相似文献   

18.
在真核生物中,3羟基3甲基戊二酸单酰辅酶A还原酶是催化合成胆固醇和非甾醇类异戊二烯的共同前体———甲羟戊酸的关键酶。该酶的活性在转录、转录后、翻译及酶降解等多个水平上受到调节。胆固醇在动脉粥样硬化的发生、发展中起重要作用,而异戊二烯则参与细胞增殖调节、信号转导及肿瘤发生过程。目前,该酶已成为一些有效的抗动脉粥样硬化药物治疗的靶点。  相似文献   

19.
Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-(14)C]C24:0 for peroxisomal beta-oxidation to generate [1-(14)C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-(14)C]acetate and [1-(14)C]C8:0 but not from [1-(14)C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-(14)C]C24:0-derived [1-(14)C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.  相似文献   

20.
Regulation of cholesterol synthesis in cultured canine intestinal mucosa   总被引:3,自引:0,他引:3  
The regulation of intestinal cholesterol synthesis was studied utilizing canine ileal mucosa maintained in organ culture for 6 h. Viability was monitored by light and electron microscopy, measurement of cellular enzymes, and the ability to actively transport a glucose analogue. The activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.4.3.4), the rate-limiting enzyme of cholesterol synthesis, increased 4-fold during a 6-h culture. A parallel increase occurred in the rate of acetate incorporation into digitonin-precipitable sterols during this period. This increase could be prevented by the addition of cycloheximide to the culture. Pure cholesterol, 7-ketocholesterol, and 25-hydroxycholesterol, when present during the last 4 h of culture, also caused significant suppression of the rise in HMG-CoA reductase activity (final HMG-CoA reductase with the three sterols was 77 +/- 4%, 68 +/- 5%, and 58 +/- 3% of control postculture value). Bile salts at low, nontoxic concentrations also inhibited the increase of enzyme activity (2 mM taurocholate = 63 +/- 3% of control, 0.5 mM taurochenodeoxycholate = 76 +/- 6% of control). In contrast, dog lipoproteins separated by ultracentrifugation failed to significantly affect intestinal cholesterol synthesis in these short term organ cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号