首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of postsynaptic calcium in the induction of long-term potentiation   总被引:8,自引:0,他引:8  
Long-term potentiation (LTP), a long-lasting, activity-dependent increase in the strength of synaptic transmission, is one of the most intensively studied forms of synaptic plasticity in the mammalian brain. In the CA1 region of the hippocampus, the induction of LTP is likely to require a rise in postsynaptic calcium levels. The main source for this calcium is influx through the NMDA receptor ionophore, although other potential sources include voltage-dependent calcium channels and release from intracellular stores. Dendritic spines, the sites of synaptic contact, may function to isolate and amplify synaptically mediated increases in postsynaptic calcium. Recent evidence indicates that the magnitude of postsynaptic calcium increase is a critical variable controlling the duration of synaptic enhancement. Although a number of calcium-dependent biochemical processes have been implicated in LTP, determining their exact role remains a challenging experimental problem.  相似文献   

2.
There is intense interest in understanding the molecular mechanisms involved in long-term potentiation (LTP) in the hippocampus. Significant progress in our understanding of LTP has followed from studies of glutamate receptors, of which there are four main subtypes (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), N-methyl-D-aspartate (NMDA), mGlu and kainate). This article summarizes the evidence that the kainate subtype of glutamate receptor is an important trigger for the induction of LTP at mossy fibre synapses in the CA3 region of the hippocampus. The pharmacology of the first selective kainate receptor antagonists, in particular the GLU(K5) subunit selective antagonist LY382884, is described. LY382884 selectively blocks the induction of mossy fibre LTP, in response to a variety of different high-frequency stimulation protocols. This antagonist also inhibits the pronounced synaptic facilitation of mossy fibre transmission that occurs during high-frequency stimulation. These effects are attributed to the presence of presynaptic GLU(K5)-subunit-containing kainate receptors at mossy fibre synapses. Differences in kainate receptor-dependent synaptic facilitation of AMPA and NMDA receptor-mediated synaptic transmission are described. These data are discussed in the context of earlier reports that glutamate receptors are not involved in mossy fibre LTP and more recent experiments using kainate receptor knockout mice, that argue for the involvement of GLU(K6) but not GLU(K5) kainate receptor subunits. We conclude that activation of presynaptic GLU(K5)-containing kainate receptors is an important trigger for the induction of mossy fibre LTP in the hippocampus.  相似文献   

3.
This paper describes circumstances around the discovery of long-term potentiation (LTP). In 1966, I had just begun independent work for the degree of Dr medicinae (PhD) in Per Andersen's laboratory in Oslo after an eighteen-month apprenticeship with him. Studying the effects of activating the perforant path to dentate granule cells in the hippocampus of anaesthetized rabbits, I observed that brief trains of stimuli resulted in increased efficiency of transmission at the perforant path-granule cell synapses that could last for hours. In 1968, Tim Bliss came to Per Andersen's laboratory to learn about the hippocampus and field potential recording for studies of possible memory mechanisms. The two of us then followed up my preliminary results from 1966 and did the experiments that resulted in a paper that is now properly considered to be the basic reference for the discovery of LTP.  相似文献   

4.
Long-term potentiation (LTP) in the hippocampus is accompanied by a number of changes on both sides of the synapse. It is now generally considered that the trigger for initiating LTP is the entry of calcium into the postsynaptic area through the NMDA-associated channel while the mechanism(s) underlying the maintenance of LTP are less well understood and probably involve contributions from both sides of the synapse.  相似文献   

5.
Experiments on hippocampus slices of rats showed that the pattern of induction of long-term post-tetanic potentiation of synaptic transmission is determined by the frequency of tetanic stimulation of Schaffer collaterals. With their high-frequency (>10/sec) stimulation, a phase of reversible increase in the amplitude of population EPSP (pEPSP) is observed within the initial 30-min-long interval; it is related to an increase in the intracellular Ca2+ concentration resulting from simultaneous activation of NMDA and metabotropic glutamate receptors and voltage-activated calcium channels. With the participation of calmodulin, Ca2+ activate Ca2+-calmodulin-dependent protein kinase II. The latter phosphorylates AMPA/kainate receptors (their kainate-responsive compartments), which promotes an increase in their chemosensitivity. Under conditions of low-frequency (<10/sec) tetanic stimulation of synaptic inputs, for the same reasons, an increase in the intradendritic Ca2+ concentration exerts no expressed influence on protein kinase II, but activates calcineurin. The latter, with the involvement of other phosphoprotein phosphatases, dephosphorylates AMPA/kainate receptors and turns some of them into the refractory state; this is expressed in a reversible depression of pEPSP. After 30 min of either high-frequency, or low-frequency stimulation, a non-decremental phase of long-term post-tetanic potentiation develops, which is related to the increase in the protein kinase C activity, phosphorylation of the AMPA-responsible compartments of AMPA/kainate receptors, their rising sensitivity, and a stable increase in the pEPSP amplitudeNeirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 163–172, July–October, 1996.  相似文献   

6.
The beta subunits of voltage-dependent Ca(2+) channels (VDCCs) have marked effects on the properties of the pore-forming alpha(1) subunits of VDCCs, including surface expression of channel complexes and modification of voltage-dependent kinetics. Among the four different beta subunits, the beta(3) subunit (Ca(v)beta3) is abundantly expressed in the hippocampus. However, the role of Ca(v)beta3 in hippocampal physiology and function in vivo has never been examined. Here, we investigated Ca(v)beta3-deficient mice for hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses. Interestingly, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. However, electrophysiological studies revealed no alteration in the Ca(2+) current density, the frequency and amplitude of miniature excitatory postsynaptic currents, and the basal synaptic transmission in the mutant hippocampus. On the other hand, however, N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic currents and NMDAR-dependent long term potentiation were significantly increased in the mutant. Protein blot analysis showed a slight increase in the level of NMDAR-2B in the mutant hippocampus. Our results suggest a possibility that, unrelated to VDCCs regulation, Ca(v)beta3 negatively regulates the NMDAR activity in the hippocampus and thus activity-dependent synaptic plasticity and cognitive behaviors in the mouse.  相似文献   

7.
The functional roles of protein tyrosine phosphatases (PTPs) in the developed CNS have been enigmatic. Here we show that striatal enriched tyrosine phosphatase (STEP) is a component of the N-methyl-D-aspartate receptor (NMDAR) complex. Functionally, exogenous STEP depressed NMDAR single-channel activity in excised membrane patches. STEP also depressed NMDAR-mediated synaptic currents whereas inhibiting endogenous STEP enhanced these currents. In hippocampal slices, administering STEP into CA1 neurons did not affect basal glutamatergic transmission evoked by Schaffer collateral stimulation but prevented tetanus-induced long-term potentiation (LTP). Conversely, inhibiting STEP in CA1 neurons enhanced transmission and occluded LTP induction through an NMDAR-, Src-, and Ca(2+)-dependent mechanism. Thus, STEP acts as a tonic brake on synaptic transmission by opposing Src-dependent upregulation of NMDARs.  相似文献   

8.
F Zheng  J P Gallagher 《Neuron》1992,9(1):163-172
Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.  相似文献   

9.
The current excitement in long-term potentiation   总被引:17,自引:0,他引:17  
  相似文献   

10.
L Zhong  NZ Gerges 《PloS one》2012,7(7):e41275
Calcium entry and the subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. The induction of long-term potentiation (LTP) in the CA1 region of the hippocampus requires a relatively high amount of calcium-calmodulin. This requirement is usually explained, based on in vitro and theoretical studies, by the low affinity of CaMKII for calmodulin. An untested hypothesis, however, is that calmodulin is not randomly distributed within the spine and its targeting within the spine regulates LTP. We have previously shown that overexpression of neurogranin enhances synaptic strength in a calmodulin-dependent manner. Here, using post-embedding immunogold labeling, we show that calmodulin is not randomly distributed, but spatially organized in the spine. Moreover, neurogranin regulates calmodulin distribution such that its overexpression concentrates calmodulin closer to the plasma membrane, where a high level of CaMKII immunogold labeling is also found. Interestingly, the targeting of calmodulin by neurogranin results in lowering the threshold for LTP induction. These findings highlight the significance of calmodulin targeting within the spine in synaptic plasticity.  相似文献   

11.
NMDA受体在海马CA3区习得性TP保持中的作用   总被引:1,自引:1,他引:1  
梁伟国  许世彤 《生理学报》1992,44(4):333-339
The effect of microinjection of 2-amino-5-phosphonovaleric acid (APV), a selective NMDA receptor antagonist, into the rat hippocampal CA3 area on the synaptic efficacy and related conditioned behavior during the acquisition and consolidation of discrimination learning behavior was examined. The results showed: (1) After population spike (PS) amplitude had just increased to the maximum through training i.e. learning-dependent LTP had just formed, APV 1 microliter (2 mmol/L) was injected into CA3 area, then the rats were trained during the time of efficacy of the drug in every experimental block. The result demonstrated that the PS amplitude could not be maintained at the highest level but decreased to the pre-experiment level after 8 blocks. Correct response percentage of rats could not be consolidated with further training but decreased to less than 10%. (2) After the PS amplitude had kept up at the highest level, APV 1 microliter (2 mmol/L) was injected into CA3 area, then the rats were trained during the time of efficacy of the drug in every experimental block, in which case the PS amplitude also could not be maintained at the highest level but decreased to the pre-experiment level after 14 blocks. Correlatively, when the correct response percentage of rats decreased gradually to less than 10%, the conditioned response of the animals extinguished, but its extinction speed was slower than it was in result (1). These results suggest that the NMDA receptor in CA3 area plays an important role in the maintenance of the learning-dependent long-term potentiation.  相似文献   

12.
13.
Long-term potentiation (LTP) is a form of synaptic plasticity thought to be involved in learning and memory. Althrough extensively studied, mainly in the CA1 region of the hippocampus, the mechanisms underlying the induction and expression of LTP are poorly elucidated. This is probably due to the fact that LTP is not a unique process and indeed recent studies have shown that several forms of LTP could be generated depending on the experimental conditions. Furthermore, LTP is generally associated with a long-lasting increase of the synaptic efficacy of AMPA receptors but an increasing number of data also suggested that NMDA receptors could be potentiated as well. NMDA receptor responses are modulated by a large number of extracellular and intracellular events, providing additional possibilities for the generation of LTP. The role of these different modulatory sites of the NMDA receptor and their relation with LTP are reviewed with a particular attention to the redox site which seems to be a selective target to distinguish between AMPA and NMDA-LTP. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
与长时程增强相关的基因表达的研究进展   总被引:4,自引:0,他引:4  
Xu H  Han TZ  Chen YW 《生理科学进展》2001,32(2):174-176
长地程增强(long-term potentiation,LTP)现象在细胞水平和分子水平反映突触的可塑性,它被认为是记忆过程中神经元活动的客观电生理指标。对其机制的研究表明,伴随着LTP的产生,有基因表达和蛋白质成分的改变。揭开LTP形成过程中所伴随的基因表达的改变,也许是探讨LTP形成机制的关键。  相似文献   

15.
This work sets out to investigate fast and slow dynamic processes and how they effect the induction of long-term potentiation (LTP). Functionally, the fast process will work as a time window to take a spatial coincidence among various inputs projected to the hippocampus, and the slow process will work as a temporal integrator of a sequence of dynamic events. Firstly, the two factors were studied using a “burst” stimulus and a “long-interval patterns” stimulus. Secondly, we propose that, for the induction of LTP, there are two dynamic processes, fast and slow, which are productively activated by bursts and long-interval patterns. The model parameters, a time constant of short dynamics and one of long dynamics, were determined by fitting the values obtained from model simulation to the experimental data. A molecular factor or cellular factors with these two time constants are likely to be induced in LTP induction. Received: 3 November 1997 / Accepted in revised form: 18 August 1999  相似文献   

16.
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.  相似文献   

17.
The neuronal transporter excitatory amino acid carrier 1 (EAAC1) is enriched in perisynaptic regions, where it may regulate synaptic spillover of glutamate. In this study we examined potential interactions between EAAC1 and ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B, but not the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluR2, were co-immunoprecipitated with EAAC1 from neuron-enriched hippocampal cultures. A similar interaction was observed in C6 glioma and human embryonic kidney cells after co-transfection with Myc epitope-tagged EAAC1 and NMDA receptor subunits. Co-transfection of C6 glioma with the combination of NR1 and NR2 subunits dramatically increased (approximately 3-fold) the amount of Myc-EAAC1 that can be labeled with a membrane-impermeable biotinylating reagent. In hippocampal cultures, brief (5 min), robust (100 microM NMDA, 10 microM glycine) activation of the NMDA receptor decreased biotinylated EAAC1 to approximately 50% of control levels. This effect was inhibited by an NMDA receptor antagonist, intracellular or extracellular calcium chelators, or hypertonic sucrose. Glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with cyclothiazide, and thapsigargin mimicked the effects of NMDA. These studies suggest that NMDA receptors interact with EAAC1, facilitate cell surface expression of EAAC1 under basal conditions, and control internalization of EAAC1 upon activation. This NMDA receptor-dependent regulation of EAAC1 provides a novel mechanism that may shape excitatory signaling during synaptic plasticity and/or excitotoxicity.  相似文献   

18.
N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) is extensively studied since it is believed to use the same molecular mechanisms that are required for many forms of learning and memory. Unfortunately, many controversies exist, not least the seemingly simple issue concerning the locus of expression of LTP. Here, we review our recent work and some of the extensive literature on this topic and present new data that collectively suggest that LTP can be explained, during its first few hours, by the coexistence of at least three mechanistically distinct processes that are all triggered by the synaptic activation of NMDARs.  相似文献   

19.
Searching for premonitory studies of hippocampal long-term potentiation (LTP), there is a paucity of data. While synaptic enhancement during repetitive activation was studied in several reports from many groups between 1955 and 1967, the reported after-effects were short, at the most lasting a few minutes. Responses lasting for more than 1 hour were not reported until 1973.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号