首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.  相似文献   

7.
Schizosaccharomyces pombe Cdc5p and its Saccharomyces cerevisiae ortholog, Cef1p, are essential Myb-related proteins implicated in pre-mRNA splicing and contained within large multiprotein complexes. Here we describe the tandem affinity purification (TAP) of Cdc5p- and Cef1p-associated complexes. Using transmission electron microscopy, we show that the purified Cdc5p complex is a discrete structure. The components of the S. pombe Cdc5p/S. cerevisiae Cef1p complexes (termed Cwfs or Cwcs, respectively) were identified using direct analysis of large protein complex (DALPC) mass spectrometry (A. J. Link et al., Nat. Biotechnol. 17:676-682, 1999). At least 26 proteins were detected in the Cdc5p/Cef1p complexes. Comparison of the polypeptides identified by S. pombe Cdc5p purification with those identified by S. cerevisiae Cef1p purification indicates that these two yeast complexes are nearly identical in composition. The majority of S. pombe Cwf proteins and S. cerevisiae Cwc proteins are known pre-mRNA splicing factors including core Sm and U2 and U5 snRNP components. In addition, the complex contains the U2, U5, and U6 snRNAs. Previously uncharacterized proteins were also identified, and we provide evidence that several of these novel factors are involved in pre-mRNA splicing. Our data represent the first comprehensive analysis of CDC5-associated proteins in yeasts, describe a discrete highly conserved complex containing novel pre-mRNA splicing factors, and demonstrate the power of DALPC for identification of components in multiprotein complexes.  相似文献   

8.
Huntington disease (HD) is an autosomal inherited disorder that causes the deterioration of brain cells. The polyglutamine (polyQ) expansion of huntingtin (Htt) is implicated in the pathogenesis of HD via interaction with an RNA splicing factor, Htt yeast two-hybrid protein A/forming-binding protein 11 (HYPA/FBP11). Besides the pathogenic polyQ expansion, Htt also contains a proline-rich region (PRR) located exactly in the C terminus to the polyQ tract. However, how the polyQ expansion influences the PRR-mediated protein interaction and how this abnormal interaction leads to the biological consequence remain elusive. Our NMR structural analysis indicates that the PRR motif of Htt cooperatively interacts with the tandem WW domains of HYPA through domain chaperoning effect of WW1 on WW2. The polyQ-expanded Htt sequesters HYPA to the cytosolic location and then significantly reduces the efficiency of pre-mRNA splicing. We propose that the toxic gain-of-function of the polyQ-expanded Htt that causes dysfunction of cellular RNA processing contributes to the pathogenesis of HD.  相似文献   

9.
We have identified a novel splicing factor, Isy1p, through two-hybrid screens for interacting proteins involved in nuclear pre-mRNA splicing. Isy1p was tagged and demonstrated to be part of the splicing machinery, associated with spliceosomes throughout the splicing reactions. At least a portion of the Isy1 protein population is associated with snRNAs; low levels of U5 and U6 snRNAs are coimmunoprecipitated specifically with Isy1p. When the ISY1 gene was knocked out, no defect in vegetative growth was observed. Using a sensitive in vivo splicing assay, however, we observed lower splicing efficiency in the isy1 null mutant compared to wild-type, indicating that Isy1 p is important in the optimization of splicing.  相似文献   

10.
SR proteins are essential pre-mRNA splicing factors that have been shown to bind a number of exonic splicing enhancers where they function to stimulate the splicing of adjacent introns. Members of the SR protein family contain one or two N-terminal RNA binding domains, as well as a C-terminal arginine–serine (RS) rich domain. The RS domains mediate protein–protein interactions with other RS domain containing proteins and are essential for many, but not all, SR protein functions. Hybrid proteins containing an RS domain fused to the bacteriophage MS2 coat protein are sufficient to activate enhancer-dependent splicing in HeLa cell nuclear extract when bound to the pre-mRNA. Here we report progress towards determining the protein sequence requirements for RS domain function. We show that the RS domains from non-SR proteins can also function as splicing activation domains when tethered to the pre-mRNA. Truncation experiments with the RS domain of the human SR protein 9G8 identified a 29 amino acid segment, containing 26 arginine or serine residues, that is sufficient to activate splicing when fused to MS2. We also show that synthetic domains composed solely of RS dipeptides are capable of activating splicing, although their potency is proportional to their size.  相似文献   

11.
12.
13.
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.  相似文献   

14.
Regulators responsible for the pervasive, nonsex-specific alternative pre-mRNA splicing characteristic of metazoans are almost entirely unknown or uncertain. We describe here a novel family of splicing regulators present throughout metazoans. Specifically, we analyze two nematode (Caenorhabditis elegans) genes. One, CeSWAP, is a cognate of the suppressor-of-white-apricot (DmSWAP) splicing regulator from the arthropod Drosophila. Our results define the ancient, conserved SWAP protein family whose members share a colinearly arrayed series of novel sequence motifs. Further, we describe evidence that the CeSWAP protein autoregulates its levels by feedback control of splicing of its own pre-mRNA analogously to the DmSWAP protein and as expected of a splicing regulator. The second nematode gene, Ceprp21, encodes an abundant nuclear cognate of the constitutive yeast splicing protein, prp21, on the basis of several lines of evidence. Our analysis defines prp21 as a second novel, ancient protein family. One of the motifs conserved in prp21 proteins--designated surp--is shared with SWAP proteins. Several lines of evidence indicate that both new families of surp-containing proteins act at the same (or very similar) step in early prespliceosome assembly. We discuss implications of our results for regulated metazoan pre-mRNA splicing.  相似文献   

15.
16.
17.
18.
The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.  相似文献   

19.
Prp2p, Prp16p, Prp22p, and Prp43p are members of the DEAH-box family of ATP-dependent putative RNA helicases required for pre-mRNA splicing in Saccharomyces cerevisiae. Recently, mammalian homologues of Prp43p and Prp22p have been described, supporting the idea that splicing in yeast and man is phylogenetically conserved. In this study, we show that a murine cell line resistant to the novel immunoregulatory drug Leflunomide (Arava) overexpresses a 135-kDa protein that is a putative DEAH-box RNA helicase. We have cloned the human counterpart of this protein and show that it shares pronounced sequence homology with Prp16p. Apart from its N-terminal domain, which is rich in RS, RD, and RE dipeptides, this human homologue of Prp16p (designated hPrp16p) is 41% identical to Prp16p. Significantly, homology is not only observed within the phylogenetically conserved helicase domain, but also in Prp16p-specific sequences. Immunofluorescence microscopy studies demonstrated that hPrp16p co-localizes with snRNPs in subnuclear structures referred to as speckles. Antibodies specific for hPrp16p inhibited pre-mRNA splicing in vitro prior to the second step. Thus, like its yeast counterpart, hPrp16p also appears to be required for the second catalytic step of splicing. Taken together, our data indicate that the human 135-kDa protein identified here is the structural and functional homologue of the yeast putative RNA helicase, Prp16p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号