首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of neurocan with hyaluronan was qualitatively characterized with alkaline phosphatase fusion proteins secreted by mammalian cells. The wild type neurocan hyaluronan binding domain fused to alkaline phosphatase bound to immobilized hyaluronan under physiological as well as moderately hypertonic conditions, whereas its ability to bind to immobilized chondroitin sulfate dropped rapidly with increasing salt concentration. Strong hyaluronan binding ability was still evident when in both link modules within the hyaluronan binding domain a basic amino acid was mutated, which is well conserved among link modules of hyaluronan binding proteins. A strong enhancement of the binding of neurocan to immobilized hyaluronan was observed after preincubation of the immobilized hyaluronan with cartilage link protein. Moreover, this preincubation mediated also the binding of a fusion protein representing only the immunoglobulin module of neurocan linked to alkaline phosphatase, which showed no binding to immobilized hyaluronan alone. The interaction of the neurocan immunoglobulin module with link protein could also be shown by overlay blot analysis. These observations suggest that the hyaluronan binding characteristics of paired link modules are different from those of single link modules, and that the reported temporal co-expression of cartilage link protein and of neurocan in developing brain implicates the possibility of a cooperative function of these molecules.  相似文献   

2.
Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that plays important roles in inflammation and ovulation. TSG-6-mediated cross-linking of HA has been proposed as a functional mechanism (e.g. for regulating leukocyte adhesion), but direct evidence for cross-linking is lacking, and we know very little about its impact on HA ultrastructure. Here we used films of polymeric and oligomeric HA chains, end-grafted to a solid support, and a combination of surface-sensitive biophysical techniques to quantify the binding of TSG-6 into HA films and to correlate binding to morphological changes. We find that full-length TSG-6 binds with pronounced positive cooperativity and demonstrate that it can cross-link HA at physiologically relevant concentrations. Our data indicate that cooperative binding of full-length TSG-6 arises from HA-induced protein oligomerization and that the TSG-6 oligomers act as cross-linkers. In contrast, the HA-binding domain of TSG-6 (the Link module) alone binds without positive cooperativity and weaker than the full-length protein. Both the Link module and full-length TSG-6 condensed and rigidified HA films, and the degree of condensation scaled with the affinity between the TSG-6 constructs and HA. We propose that condensation is the result of protein-mediated HA cross-linking. Our findings firmly establish that TSG-6 is a potent HA cross-linking agent and might hence have important implications for the mechanistic understanding of the biological function of TSG-6 (e.g. in inflammation).  相似文献   

3.
TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His(4)) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pK(a) values of charged residues within the Link module were determined using NMR. These data indicated that His(4) makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp(89)), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr(12)). This molecular network transmits the change in ionization state of His(4) to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His(45), is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments.  相似文献   

4.
《The Journal of cell biology》1996,132(6):1199-1208
CD44-mediated cell adhesion to hyaluronate is controlled by mechanisms which are poorly understood. In the present work we examine the role of N-linked glycosylation and Ser-Gly motifs in regulating CD44- hyaluronate interaction. Our results show that treatment of a panel of human cell lines which constitutively express CD44 with the inhibitor of N-linked glycosylation tunicamycin results in the loss of attachment of these cells to hyaluronate-coated substrate. In contrast, treatment of the same cells with deoxymannojirimycin, which inhibits the conversion of high mannose oligosaccharides to complex N-linked carbohydrates, results in either no change or an increase in CD44- mediated adhesion to hyaluronate, suggesting that complex N-linked oligosaccharides may not be required for and may even inhibit CD44-HA interaction. Using human melanoma cells stably transfected with CD44 N- linked glycosylation site-specific mutants, we show that integrity of five potential N-linked glycosylation sites within the hyaluronate recognition domain of CD44 is critical for hyaluronate binding. Mutation of any one of these potential N-linked glycosylation sites abrogates CD44-mediated melanoma cell attachment to hyaluronate-coated surfaces, suggesting that all five sites are necessary to maintain the HA-recognition domain in the appropriate conformation. We also demonstrate that mutation of serine residues which constitute the four Ser-Gly motifs in the membrane proximal domain, and provide potential sites for glycosaminoglycan side chain attachment, impairs hyaluronate binding. Taken together, these observations indicate that changes in glycosylation of CD44 can have profound effects on its interaction with hyaluronic acid and suggest that glycosylation may provide an important regulatory mechanism of CD44 function.  相似文献   

5.
Cellular function and adaptive behavior is often driven by signals generated in response to the local tissue microenvironment. Cell surface receptors that detect changes in extracellular matrix composition and modifications to extracellular matrix components, are ideally positioned to provide highly responsive sensors of changes in the microenvironment and mediate changes in cellular function required to maintain tissue integrity. Receptors can act as “on/off” switches, but ligand/receptor complexes that provide “rheostatic” control may be more sensitive, provide a more rapid mechanism of control and allow for fine-tuning of cellular responses to the microenvironment. Herein, we review evidence that transitions in the physiochemical properties of the extracellular glycosaminoglycan hyaluronan and in the function of its major receptor, CD44, differentially regulate ERK and Rac signal transduction pathways to provide critical rheostatic control of mesenchymal cell proliferation.  相似文献   

6.
CD44, a cell-surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, can mediate leukocyte rolling on hyaluronan substrates and has been implicated in leukocyte migration to sites of inflammation. CD44-mediated binding to hyaluronan is of low affinity, and effective cell/matrix interaction depends on multiple interactions with the multivalent ligand. We replaced the Link module of CD44 with the homologous region of TSG-6, a hyaluronan-binding protein secreted in response to inflammation whose Link module has a higher affinity for ligand. Monoclonal antibodies raised against the CD44/TSG-6 chimera recognized recombinant human TSG-6 and native mouse TSG-6 and blocked hyaluronan binding to these proteins. Cells expressing the CD44/TSG-6 molecule bound hyaluronan with higher avidity than cells expressing CD44. This resulted in changes in the hyaluronan binding properties characteristic of cells expressing CD44 such as requirements for threshold levels of receptor expression and for hyaluronan of high molecular mass. In parallel plate flow assays used to model leukocyte rolling, cells expressing CD44/TSG-6 failed to roll on hyaluronan. Instead, they stuck and remained "tethered" to the substrate under fluid flow. This result argues that the low affinity of CD44 for its ligand is important for rolling, an early phase of leukocyte extravasation from the blood.  相似文献   

7.
The hyaluronan receptor, CD44   总被引:12,自引:0,他引:12  
CD44 is a widely expressed cell surface hyaluronan receptor which plays a key role in mediating cell migration. A number of recent papers demonstrating an interplay between CD44 and matrix metalloproteinases (MMPs) have shed important insights into the molecular mechanisms underlying these events. This has important implication for understanding how mis-regulation of CD44 can contribute to disease pathologies.  相似文献   

8.
CD44 is a protein, being a major cell surface receptor for hyaluronan (HA). Molecular modeling investigation was carried out on the murine CD44 in complex with a HA heptasaccharide in order to: (i) elucidate the nature and dynamics of interactions between the HA chain and CD44; (ii) find out if the existence of two conformational forms of CD44 discovered in the XRD (X-Ray Diffraction) study can be responsible for its switching between low and high affinity for HA. The results indicate that the contact of CD44 with HA is dominated by hydrogen bonding with small contribution of hydrophobic interactions and salt bridges. In addition, the two ('A' and 'B') conformational forms of the HA-CD44 complex reported experimentally by Banerji et al. cannot be observed during simulations when considering the distance between HA and the sidechain of the R45 residue. There exists, however, a free energy barrier associated with the change of the φ dihedral angle value at Y46. Additionally, some thermodynamic parameters (e.g. the Gibbs free energy change) accompanying the HA binding by CD44 were estimated.  相似文献   

9.
Squamous cell laryngeal carcinoma undergoes significant structural-related modifications of the extracellular matrix components (ECM), the most characteristics being the presence of degraded collagen, aggrecan and hyaluronan. We examined the presence of hyaluronidase and of the cellular hyaluronan receptor CD44 during the various stages of cancer. ECM components were extracted by using PBS, 4 M GdnHCl and 4 M GdnHCl-0.1% Triton-X 100 sequentially and hyaluronidase and CD44 analyzed by zymography and immunochemistry techniques. Total RNA was also extracted and the mRNA of the various hyaluronidases and of CD44 was analyzed after amplification with RT-PCR. Hyaluronidase was detected as a double band of 45 and 55 kDa molecular mass, only in cancer samples. The analysis of mRNA indicated an aberrant expression of PH-20, the testicular-type hyaluronidase, at late stages of cancer and an overexpression of HYAL1 only at stage IV. In addition, CD44 was identified in two protein bands of 80 and 64 kDa in cancer samples. The analysis of mRNA showed that hyaluronan receptor was expressed in a stage-related order. Thus, it could be suggested that in laryngeal squamous cell carcinoma, cancer cells migrated and proliferated under the influence of small molecular mass hyaluronan, by expressing increased amounts of its receptor.  相似文献   

10.
The gene expression plasmid, pET-Lmluc, for the fusion protein of the hyaluronan binding domain from human TSG-6 [product of tumor necrosis factor (TNF)-stimulated gene-6] and luciferase from Renilla reniformis was constructed. The fused gene was expressed in Escherichia coli and the resulted insoluble Lm-luc fusion protein was purified and refolded to recover both the hyaluronan binding capability and the luciferase activity. Hyaluronan as low as 1 ng ml–1 was detected by using the indirect enzymatic immunological assay with the refolded Lm-luc fusion protein.  相似文献   

11.
Hyaluronan binding by cell surface CD44   总被引:16,自引:0,他引:16  
CD44 is the primary cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan. Here we determined the relative avidities of unlabeled hyaluronan preparations for cell surface CD44 by their ability to block the binding of fluorescein-conjugated hyaluronan to a variety of cells. We show that hyaluronan binding at the cell surface is a complex interplay of multivalent binding events affected by the size of the multivalent hyaluronan ligand, the quantity and density of cell surface CD44, and the activation state of CD44 as determined by cell-specific factors and/or treatment with CD44-specific monoclonal antibody (mAb). Using low M(r) hyaluronan oligomers of defined sizes, we observed monovalent binding between 6 and 18 sugars. At approximately 20 to approximately 38 sugars, there was an increase in avidity (approximately 3x), suggesting that divalent binding was occurring. In the presence of the inducing mAb IRAWB14, monovalent binding avidity was similar to that of noninduced CD44, but beginning at approximately 20 residues, there was a dramatic and progressive increase in avidity with increasing oligomer size ( approximately 22 < 26 < 30 < 34 < 38 sugars). Kinetic studies of binding and dissociation of fluorescein-conjugated hyaluronan indicated that inducing mAb treatment had little effect on the binding kinetics, but dissociation from the cell surface was greatly delayed by inducing mAb.  相似文献   

12.
The adhesion of tumour cells to the endothelial cells of blood vessels of the microcirculation represents a crucial step in haematogenous metastasis formation. Similar to leukocyte extravasation, selectins mediate initial tumour cell rolling on endothelium. An additional mechanism of leukocyte adhesion to endothelial cells is mediated by hyaluronan (HA). However, data on the interaction of tumour cells with hyaluronan under shear stress are lacking. The expression of the hyaluronan binding protein CD44 on tumour cell surfaces was evaluated using flow cytometry. The adhesion of tumour cells to HA with regard to adhesive events and rolling velocity was determined in flow assays in the human small cell lung cancer (SCLC) cell lines SW2, H69, H82, OH1 and OH3, the colon carcinoma cell line HT29 and the melanoma cell line MeWo. Hyaluronan deposition in human and mouse lung blood vessels was histochemically determined. MeWo adhered best to HA followed by HT29. SCLC cell lines showed the lowest CD44 expression on the cell surface and lowest number of adhesive events. While hyaluronan was deposited in patches in the microvasculature of the alveolar septum in the human lung, it was only present in the periarterial space in the mouse lung. Certain tumour entities bind to HA under physiological shear stresses so that HA can be considered a further ligand for cell extravasation in haematogenous metastasis. As hyaluronan is deposited within the pulmonary microvasculature, it may well serve as a ligand for its binding partner CD44, which is expressed by many tumour cells.  相似文献   

13.
Role of CD44 and hyaluronan in neutrophil recruitment   总被引:7,自引:0,他引:7  
Lymphocyte CD44 interactions with hyaluronan localized on the endothelium have been demonstrated to mediate rolling and regulate lymphocyte entry into sites of chronic inflammation. Because neutrophils also express CD44, we investigated the role of CD44 and hyaluronan in the multistep process of neutrophil recruitment. CD44(-/-) and wild-type control mice were intrascrotally injected with the neutrophil-activating chemokine, MIP-2, and leukocyte kinetics in the cremasteric microcirculation were investigated 4 h subsequently using intravital microscopy. Neither the rolling flux nor the rolling velocities were decreased in CD44(-/-) mice relative to wild-type mice. In vitro, neutrophils did not roll on the CD44 ligand hyaluronan, consistent with the in vivo data that CD44/hyaluronan did not mediate rolling. However, the number of adherent leukocytes in the venule was decreased by 65% in CD44(-/-) mice compared with wild-type mice. Leukocyte emigration was also greatly decreased in the CD44(-/-) mice. The same decrease in adhesion and emigration was observed in the wild-type mice given hyaluronidase. Histology revealed neutrophils as being the dominant infiltrating population. We generated chimeric mice that express CD44 either on their leukocytes or on their endothelium and found that CD44 on both the endothelium and neutrophils was important for optimal leukocyte recruitment into tissues. Of those neutrophils that emigrated in wild-type and CD44(-/-) mice, there was no impairment in migration through the interstitium. This study suggests that CD44 can mediate some neutrophil adhesion and emigration, but does not appear to affect subsequent migration within tissues.  相似文献   

14.
The hyaluronan receptor belongs to the polymorphic family of CD44 glycoproteins, which have been implicated in a variety of cellular functions including adhesion to hyaluronan and collagen, the binding of lymphocytes to high endothelial cells during extravasation, and conferring metastatic potential to carcinoma cells. Here, we demonstrate that the receptor also participates in the uptake and degradation of hyaluronan by both transformed fibroblasts (SV-3T3 cells) and alveolar macrophages. These cells were incubated with isotopically labeled hyaluronan for various periods of time, and the extent of degradation was determined by either molecular-sieve chromatography or centrifugation through Centricon 30 microconcentrators. The macrophages degraded the hyaluronan at a faster rate than the SV-3T3 cells, which may reflect the fact that they contained a greater number of receptors. More importantly, in both cell types, the degradation of hyaluronan was specifically blocked by antibodies directed against the receptor. However, the receptor by itself did not have the ability to degrade hyaluronan, since preparations of SV-3T3 membranes containing the receptor did not break down hyaluronan. Subsequent experiments revealed that macrophages can internalize fluorescein-tagged hyaluronan, and this process was blocked by antibodies against the receptor. Furthermore, the subsequent degradation of hyaluronan was inhibited by agents that block the acidification of lysosomes (chloroquine and NH4Cl). Thus, the most likely explanation for these results is that the receptor mediates the uptake of hyaluronan into the cell where it can be degraded by acid hydrolases in lysosomes. The ability of cells expressing the receptor to degrade hyaluronan may be important during tissue morphogenesis and cell migration.  相似文献   

15.
CD44-mediated uptake and degradation of hyaluronan.   总被引:8,自引:0,他引:8  
Hyaluronan turnover occurs systemically from the lymph and serum as well as locally by the same cells responsible for its synthesis. Local turnover involves receptor-mediated uptake and delivery to lysosomes. Of the many hyaluronan binding proteins/receptors known, the participation of CD44 in the internalization of hyaluronan has been best characterized. Some fraction of the hyaluronan bound to CD44 becomes internalized and delivered to lysosomes by a mechanism that is not dependent on clatherin, caveolae or pinocytosis. In cells such as chondrocytes, anabolic and catabolic cytokines can alter the activity of CD44 toward hyaluronan internalization. However, the mechanism of cellular regulation remains unclear. Regulation may involve the participation of alternatively spliced isoforms of CD44, changes in CD44 phosphorylation, changes in cytoskeletal binding proteins or, the activity or extracellular proteolytic activity.  相似文献   

16.
BACKGROUND: Increased expression of the connective tissue polysaccharide hyaluronan (HA) in the renal corticointerstitium is associated with progressive renal fibrosis. Numerous studies have demonstrated involvement proximal tubular epithelial cells in the fibrotic process and in the current study we have characterised their expression of the HA receptor, CD44, and examined changes in CD44 expression and function in response to either IL-1beta or glucose. METHODS: Characterisation of CD44 splice variant expression was carried out in primary cultures of human proximal tubular cells (PTC) and HK2 cells. Binding and internalisation HA was examined by addition of exogenous of fluorescein-HA (fl-HA), and expression of CD44 examined by immunoblot analysis and flow cytometry. Alteration in "functional" CD44 was determined by immunoprecipitation of CD44 following stimulation in the presence of fl-HA. RESULTS: PTC, both primary culture and the PTC cell line, HK2, express at least 5 CD44 splice variants, the expression of which are not altered by addition of either IL-1beta or 25mM D-glucose. Addition of either stimulus increased cell surface binding and internalisation of fl-HA and increased expression of functionally active CD44. Increased binding and internalisation of fl-HA, was blocked by anti-CD44 antibody, and by the inhibition of O-glycosylation. CONCLUSIONS: The data demonstrate that stimuli inducing PTC HA synthesis also regulate PTC-HA interactions. Furthermore increased HA binding and internalisation is the result of post-translational modification of CD44 by O-glycosylation, rather than by alteration in expression of CD44 at the cell surface, or by alternate use of CD44 splice variants.  相似文献   

17.
Cytokines regulate the affinity of soluble CD44 for hyaluronan   总被引:2,自引:0,他引:2  
Cichy J  Puré E 《FEBS letters》2004,560(1-3):69-74
DNA enzymes are RNA-cleaving single-stranded DNA molecules. We designed DNA enzymes targeting the PB2 mRNA translation initiation (AUG) region of the influenza A virus (A/PR/8/34). The modified DNA enzymes have one or two N3′-P5′ phosphoramidate bonds at both the 3′- and 5′-termini of the oligonucleotides, which significantly enhanced their nuclease resistance. These modified DNA enzymes had the same cleavage activity as the unmodified DNA enzymes, determined by kinetic analyses, and reduced influenza A virus replication by more than 99%, determined by plaque formation. These DNA enzymes are highly specific; their protective effect was not observed in influenza B virus (B/Ibaraki)-infected Madin–Darby canine kidney cells.  相似文献   

18.
The ERM family members, ezrin, radixin, and moesin, localizing just beneath the plasma membranes, are thought to be involved in the actin filament/plasma membrane association. To identify the integral membrane protein directly associated with ERM family members, we performed immunoprecipitation studies using antimoesin mAb and cultured baby hamster kidney (BHK) cells metabolically labeled with [35S]methionine or surface-labeled with biotin. The results indicated that moesin is directly associated with a 140-kD integral membrane protein. Using BHK cells as antigens, we obtained a mAb that recognized the 140-kD membrane protein. We next cloned a cDNA encoding the 140-kD membrane protein and identified it as CD44, a broadly distributed cell surface glycoprotein. Immunoprecipitation with various anti-CD44 mAbs showed that ezrin and radixin, as well as moesin, are associated with CD44, not only in BHK cells, but also in mouse L fibroblasts. Furthermore, immunofluorescence microscopy revealed that in both BHK and L cells, the Triton X-100-insoluble CD44 is precisely colocalized with ERM family members. We concluded that ERM family members work as molecular linkers between the cytoplasmic domain of CD44 and actin-based cytoskeletons.  相似文献   

19.
CD44 is a multifunctional adhesion molecule that binds to hyaluronan (HA), type I collagen, and fibronectin. We investigated localization of CD44 and HA in mandibular condylar cartilage compared with the growth plate and the articular cartilage, to clarify the characteristics of chondrocytes. We also performed Western blotting using a lysate of mandibular condyle. In mandibular condyle, CD44-positive cells were seen in the surface region of the fibrous cell layer and in the proliferative cell layer. Western blotting revealed that the molecular weight of CD44 in condyle was 78 to 86 kD. Intense reactivity for HA was detected on the surface of the condyle and the lacunae of the hypertrophic cell layer. Moderate labeling was seen in cartilage matrix of the proliferative and maturative layer. Weak labeling was also seen in the fibrous cell layer. In growth plate and articular cartilage, HA was detected in all cell layers. However, chondrocytes of these cartilages did not exhibit reactivity for CD44. These results suggest that chondrocytes in the mandibular condylar cartilage differ in expression of CD44 from those in tibial growth plate and articular cartilage. Cell-matrix interaction between CD44 and HA may play an important role in the proliferation of chondrocytes in the mandibular condyle.  相似文献   

20.
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号