首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid hydroperoxides and phospholipid alcohols are two of the major forms of oxidatively modified phospholipids produced during oxidant stress and lipid peroxidation. The process of lipid peroxidation is known to affect the physiological function of membranes. We, therefore, investigated the effects of lipid peroxidation products on the molecular interactions in membranes. Our study was specifically focused on the effects of lipid peroxidation products on static membrane structure (molecular orientational order) and on the reorientational dynamics of the probe molecules in lipid bilayers. The study was done by performing angle-resolved fluorescence depolarization measurements (AFD) on the fluorescent probe diphenylhexatriene (DPH) and by performing angle-resolved electron spin resonance (A-ESR) measurements on cholestane (CSL) nitroxide spin probes embedded in macroscopically oriented planar bilayers consisting of 2-10% 1-palmitoyl-2-(9/13-hydroperoxylinoleoyl)phosphatidylcholine (PLPC-OOH) or 1-palmitoyl-2-(9/13-hydroxylinoleoyl)phosphatidylcholine (PLPC-OH) in 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC) or dilinoleoylphosphatidylcholine (DLPC). Both probe molecules have rigid cylindrical geometries and report on the overall molecular order and dynamics. However, being more polar, the nitroxide spin probe CSL is preferentially located near the surface of the membrane, while the less polar fluorescent probe DPH reports preferentially near the central hydrophobic region of the lipid bilayers. The results show that the presence of relatively small amounts of oxidatively modified phospholipids within the PLPC or DLPC membranes causes pronounced structural effects as the molecular orientational order of the probe molecules is strongly decreased. In contrast, the effect on membrane reorientational dynamics is minimal.  相似文献   

2.
A scheme of the location of a fluorescent probe 4-dimethylaminochalcone (DCM) in a phospholipid membrane has been proposed. According to the scheme the DMC dimethylamino group is located near phosphate groups and the oxygen atom--in the carbonyl groups region of phosphatidylcholine molecules. It is shown that DMC fluorescence is dynamically quenched by water molecules in the membrane. Therefore the quantum yield and, partly the position of DMC fluorescence maximum are determined by the water concentration near the probe, by the ability of water molecules to penetrate into the membrane as far as the carbonyl groups of fatty acid residues and by the water mobility in the membrane layer.  相似文献   

3.
The interaction of lipid soluble spin labels with wheat embryo axes has been investigated to obtain insight into the structural organization of lipid domains in embryo cell membranes, using conventional electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) spectroscopy. Stearic acid spin labels (n-SASL) and their methylated derivatives (n-MeSASL), labelled at different positions of their doxyl group (n=5, 12 and 16), were used to probe the ordering and molecular mobility in different regions of the lipid moiety of axis cell membranes. The ordering and local polarity in relation to the position of the doxyl group along the hydrocarbon chain of SASL, determined over the temperature range from -50 to +20 degrees C, are typical for biological and model lipid membranes, but essentially differ from those in seed oil droplets. Positional profiles for ST-EPR spectra show that the flexibility profile along the lipid hydrocarbon chain does exist even at low temperatures, when most of the membrane lipids are in solid state (gel phase). The ordering of the SASL nitroxide radical in the membrane surface region is essentially higher than that in the depth of the membrane. The doxyl groups of MeSASLs are less ordered (even at low temperatures) than those of the corresponding SASLs, indicating that the MeSASLs are located in the bulk of membrane lipids rather than in the protein boundary lipids. The analysis of the profiles of EPR and ST-EPR spectral parameters allows us to conclude that the vast majority of SASL and MeSASL molecules accumulated in embryo axes is located in the cell membranes rather than in the interior of the oil bodies. The preferential partitioning of the doxyl stearates into membranes demonstrates the potential of the EPR spin-labelling technique for the in situ study of membrane behavior in seeds of different hydration levels.  相似文献   

4.
The interaction with membranes of three anti-cancer drugs of the ellipticine family was studied by fluorescence quenching of membrane probes. The fluorescence of three probes, located at different levels in membranes, was quenched by addition of two types of ellipticine derivatives, one amphiphilic drug (9-methoxyellipticine) and two dipolar molecules (9-aminoellipticine and 9-hydroxyellipticine). By comparing the quenching curves obtained, the following can be proposed. a) 9-Methoxyellipticine can penetrate deeper in the lipid layers than 9-aminoellipticine and 9-hydroxyellipticine can. b) The three drugs are able to penetrate at least between the first methylene groups of the acyl chains of lipids in liposomes. c) In an isolated bacterial membrane, only 9-methoxyellipticine can be located in the region of the first methylene groups of lipids, the two dipolar drugs being adsorbed on the membrane surface. It was also shown that cholesterol hindered the penetration of 9-methoxyellipticine in the bilayer of liposomes.  相似文献   

5.
1. Steroid molecules containing the alpha,beta-unsaturated oxo group in various positions were incorporated with egg phosphatidylcholine into liposomes and into human erythrocyte membranes. 2. The liposomes formed contained 0.3-0.94mol of steroid/mol of phospholipid and the steroids replaced 19-76% of the erythrocyte membrane sterol. 3. The optical rotatory dispersion (o.r.d.) spectra of the steroids in these structures were compared with those obtained in solvents of different polarity. 4. The o.r.d. spectra of cholesta-4,6-dien-3-one and 3-hydroxycholest-3-en-2-one in liposomes resembled those obtained with polar solvents such as ethanol or triethyl phosphate-water (1:1, v/v). 5. The o.r.d. spectra of 3-hydroxycholest-7-en-6-one and 3-hydroxycholest-5-en-7-one in liposomes resembled those obtained with moderately polar solvents such as dioxan. 6. The o.r.d. spectrum of 3-hydroxycholest-8(14)-en-15-one in liposomes resembled those obtained with non-polar solvents such as cyclohexane. 7. 3-Hydroxycholest-3-en-2-one did not exchange with erythrocyte membrane cholesterol, but the other steroids did do so and the o.r.d. spectra of the membranes containing them closely resembled those obtained with liposomes. 8. From the results, the position of sterol molecules with respect to the phospholipid molecules in liposomes and membranes of human erythrocyte ;ghosts' can be deduced.  相似文献   

6.
Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact.  相似文献   

7.
The effects of calcium and of the psychoactive drug chlorpromazine (CPZ) on the rat synaptic plasma membrane have been studied using two stearic nitroxide spin labels having their doxyl groups in positions 5 and 16 and the fluorescent probe 1-anilinonaphtalene-8-sulfonate (ANS). The mobility of the 5-doxyl stearic spin label which probes the membrane phospholipids in the vicinity of their polar heads is decreased in the presence of both compounds. Calcium is more efficient in this respect than CPZ. In spite of this qualitative similarity of action, CPZ inhibits the effect of calcium and vice versa. No modification of the 16-doxyl stearic spectrum has been observed even at high calcium or CPZ concentrations. An increase in fluorescence intensity and a blue shift in the emission wavelength of ANS-probed membranes are observed with very low CPZ concentrations (10?7 to 10?5m). With higher concentrations, a further intensity increase and a further blue shift are due to direct interaction between ANS and CPZ. Calcium also increases the fluorescence intensity of ANS-labeled membranes in the concentration range 10?5–10?2m. As for the spin-label data, the effects of both compounds are mutually competitive. It is concluded that calcium interacts principally with the phospholipid polar heads of this type of membrane. However, the competition with CPZ suggests indirectly that this ion is also bound to membrane proteins. CPZ has an affinity for membrane lipids only at high concentrations. In its pharmacologically active concentration range, it is located preferentially on the membrane proteins.  相似文献   

8.
The simian immunodeficiency virus fusion peptide constitutes a 12-residue N-terminal segment of the gp32 protein that is involved in the fusion between the viral and cellular membranes, facilitating the penetration of the virus in the host cell. Simian immunodeficiency virus fusion peptide is a hydrophobic peptide that in Me(2)SO forms aggregates that contain beta-sheet pleated structures. When added to aqueous media the peptide forms large colloidal aggregates. In the presence of lipidic membranes, however, the peptide interacts with the membranes and causes small changes of the membrane electrostatic potential as shown by fluorescein phosphatidylethanolamine fluorescence. Thioflavin T fluorescence and Fourier transformed infrared spectroscopy measurements reveal that the interaction of the peptide with the membrane bilayer results in complete disassembly of the aggregates originating from an Me(2)SO stock solution. Above a lipid/peptide ratio of about 5, the membrane disaggregation and water precipitation processes become dependent on the absolute peptide concentration rather than on the lipid/peptide ratio. A schematic mechanism is proposed, which sheds light on how peptide-peptide interactions can be favored with respect to peptide-lipid interactions at various lipid/peptide ratios. These studies are augmented by the use of the fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl ] pyridinium betaine that shows the interaction of the peptide with the membranes has a clear effect on the magnitude of the so-called dipole potential that arises from dipolar groups located on the lipid molecules and oriented water molecules at the membrane-water interface. It is shown that the variation of the membrane dipole potential affects the extent of the membrane fusion caused by the peptide and implicates the dipolar properties of membranes in their fusion.  相似文献   

9.
The ability of oligomeric lysozyme to modify the molecular organization of the model bilayer membranes composed of phosphatidylcholine (PC) and its mixtures with phosphatidylglycerol (PG) or cholesterol (Chol) was assessed using fluorescent probes 6-propionyl-2-dimethylaminonaphthalene (Prodan), 4-dimethylaminochalcone (DMC), pyrene and 1,6-diphenyl-1,3,5-hexatriene (DPH). The observed changes in the fluorescence characteristics of polarity-sensitive probes Prodan and DMC, located in interfacial bilayer region, were interpreted due to the partial dehydration of the glycerol backbone, which was under the influence of aggregated protein. Cholesterol was found to prevent the perturbations of membrane polar part by lysozyme aggregates. Analysis of the pyrene excimerization data revealed an oligomer-induced reduction in bilayer free volume, presumably caused by an increased packing density of hydrocarbon chains. This effect proved to be virtually independent of membrane composition. It was demonstrated that membranotropic activity of oligomeric lysozyme markedly exceeds that of monomeric protein. The biological significance of the results obtained is twofold, implicating the general membrane-mediated mechanisms of oligomer toxicity and specific pathways of lysozyme fibrillogenesis in vivo associated with familial nonneuropathic systemic amyloidosis.  相似文献   

10.
Proteolysis of rhodopsin in disc membranes of right-side out orientation by thermolysin, papain and St. aureus V8 protease allowed to identify two highly exposed regions of polypeptide chain located on the cytoplasmic membrane surface: carboxyl terminal sequence 321-348 and the fragment 236-241. Incubation with chymotrypsin reveals the third site on the cytoplasmic surface, 146-147, accessible to proteolytic enzymes. Frozen-thawed membranes comprise a mixture of vesicles with normal and inverted orientation. Both thermolytic and chymotryptic digests of rhodopsin in these membranes contain the polypeptide which represents the amino terminal sequence lacking the first 30 amino acid residues. Thus at least 30 amino acids from the N-terminus must protrude into the intradiscal space. One additional site was located on the intradiscal surface: papain digests rhodopsin in the inverted membranes at the position 186-187. Localization of the proteolytic cleavage sites allowed to propose a model for rhodopsin topography in disc membrane: the polypeptide chain traverses the bilayer thickness seven times; each of seven transmembrane segments containing approximately 40 amino acid residues includes a sequence of approximately 30 hydrophobic amino acids; which are probably in close contact with hydrocarbon matrix of the membrane. Hydrophobic sequences are terminated with fragments containing clusters of hydrophilic amino acids, possibly interacting with lipid polar head groups and orienting each segment in the bilayer.  相似文献   

11.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

12.
In the previous paper (Block, M. A., Dorne, A.-J., Joyard, J., and Douce, R. (1983) J. Biol. Chem. 258, 13273-13280), we have described a method for the separation of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. The two envelope membranes have a different weight ratio of acyl lipid to protein (2.5-3 for the outer envelope membrane and 0.8-1 for the inner envelope membrane). The two membranes also differ in their polar lipid composition. However, in order to prevent the functioning of the galactolipid:galactolipid galactosyltransferase during the course of envelope membrane separation, we have analyzed the polar lipid composition of each envelope membrane after thermolysin treatment of the intact chloroplasts. The outer envelope membrane is characterized by the presence of high amounts of phosphatidylcholine and digalactosyldiacylglycerol whereas the inner envelope membrane has a polar lipid composition almost identical with that of the thykaloids. No phosphatidylethanolamine or cardiolipin could be detected in either envelope membranes, thus demonstrating that the envelope membranes, and especially the outer membrane, do not resemble extrachloroplastic membranes. No striking differences were found in the fatty acid composition of the polar lipids from either the outer or the inner envelope membrane. The two envelope membranes also differ in their carotenoid composition. Among the different enzymatic activities associated with the chloroplast envelope, we have shown that the Mg2+-dependent ATPase, the UDP-Gal:diacylglycerol galactosyltransferase, the phosphatidic acid phosphatase, and the acyl-CoA thioesterase are associated with the inner envelope from spinach chloroplasts whereas the acyl-CoA synthetase is located on the outer envelope membrane.  相似文献   

13.
1. The 129 MHz 31P-NMR spectrum of Acholeplasma laidlawii membranes is very similar to the spectrum of the derived liposomes and is a typical "solid state" spectrum in which the major contribution to the linewidth is made by the chemical shift anisotropy. From the value of the chemical shift anisotropy an order parameter of 0.15 is estimated for the lipid phosphates in both membranes. 2. The 31P-NMR spectrum of the A. laidlawii membrane is insensitive to pronase digestion of 4-60% of the membrane proteins and subsequent cytochrome C binding. These results indicate that either no strong lipid polar headgroup-protein interactions occur in the membrane or that the lipid-protein "complexes" in the membrane have a fast rotation (Tc shorter than 10(-6)S) along an axis perpendicular to the plane of the membrane. 3. Phospholipase A2 degrades all the phosphatidylglycerol in the membrane. The resulting membrane contains a phosphoglycolipid as the sole phosphorus-containing compound. The 31P-NMR spectrum of these membranes is identical to the spectrum of the native membranes suggesting a similar motion for the phosphate groups in both lipids. 4. Ca2+ binding to liposomes prepared from either the total polar lipids or the total phosphorus-containing lipids isolated from the A. laidlawii membrane does not affect the 21P-NMR spectrum. 5. The 31P-NMR spectrum of the membranes and derived liposomes, however, is sensitive to lipid phase transitions. When the membrane lipids are in the gel state a broadening of the 31P resonance occurs demonstrating that the polar head group motion in a biological membrane is more restricted below the lipid-phase transition temperature.  相似文献   

14.
Spin labeling methods were used to study the structure and dynamic properties of dimyristoylphosphatidylcholine (DMPC) membranes as a function of temperature and the mole fraction of polar carotenoids. The results in fluid phase membranes are as follows: (1) Dihydroxycarotenoids, zeaxanthin and violaxanthin, increase order, decrease motional freedom and decrease the flexibility gradient of alkyl chains of lipids, as was shown with stearic acid spin labels. The activation energy of rotational diffusion of the 16-doxylstearic acid spin label is about 35% less in the presence of 10 mol% of zeaxanthin. (2) Carotenoids increase the mobility of the polar headgroups of DMPC and increase water accessibility in that region of membrane, as was shown with tempocholine phosphatidic acid ester. (3) Rigid and highly anisotropic molecules dissolved in the DMPC membrane exhibit a bigger order of motion in the presence of polar carotenoids as was shown with cholestane spin label (CSL) and androstane spin label (ASL). Carotenoids decrease the rate of reorientational motion of CSL and do not influence the rate of ASL, probably due to the lack of the isooctyl side chain. The abrupt changes of spin label motion observed at the main phase transition of the DMPC bilayer are broadened and disappear at the presence of 10 mol% of carotenoids. In gel phase membranes, polar carotenoids increase motional freedom of most of the spin labels employed showing a regulatory effect of carotenoids on membrane fluidity. Our results support the hypothesis of Rohmer, M., Bouvier, P. and Ourisson, G. (1979) Proc. Natl. Acad. Sci. USA 76, 847-851, that carotenoids regulate the membrane fluidity in Procaryota as cholesterol does in Eucaryota. A model is proposed to explain these results in which intercalation of the rigid rod-like polar carotenoid molecules into the membrane enhances extended trans-conformation of the alkyl chains, decreases free space in the bilayer center, separate the phosphatidylcholine headgroups and decreases interaction between them.  相似文献   

15.
H Rottenberg 《Biochemistry》1992,31(39):9473-9481
Prodan [6-propionyl-2-(dimethylamine)naphthalene] is a hydrophobic fluorescent probe which is extremely sensitive to both the polarity and the hydrogen-bond donating capacity of the solvent. In binary mixtures of solvents, the hydrogen-bond donating effect on Prodan fluorescence saturates at relatively low concentrations of protic solvent while the polarity effect is proportional to the mixture's dielectric constant. The fluorescence emission maximum is approximately a linear function of the dielectric constant in both protic and aprotic solvents, and this allows estimation of the dielectric constant in both environments. In phospholipid bilayers and biological membranes, Prodan exhibits two distinct emission peaks: blue (430-445 nm) and green (470-505 nm). Temperature determines the relative intensity of the two peaks, but their wavelengths depend on the type of membrane and appear to reflect a specific membrane environment. In phospholipid vesicles, alcohols reduce the fluorescence intensity of the blue peak and produce a red-shift in the emission maximum of the green peak. Taking the partition coefficients of the alcohols into account, short-chain alcohols are much more effective than longer-chain alcohols in red-shifting the emission maximum of the green peak. Alcohols have similar effects on Prodan fluorescence in liver microsomal and mitochondrial membranes, synaptosomal membranes, and red blood cell plasma membranes. However, in liver organelle membranes the red-shift of the green peak is the dominant effect while in plasma membranes the quenching of the fluorescence of the blue peak is dominant. These effects are observed at low (pharmacological) ethanol concentrations and provide a unique tool for probing the interactions of ethanol with biological membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Intramolecular excimer formation of 1,3-di(2-pyrenyl)propane was used to study the fluidity of liposomes prepared from membrane polar lipids of Bacillus stearothermophilus. On the basis of spectral data, local polarity and polarizability parameters were established suggesting that the probe molecules are located well inside the membranes, but displaced towards the polar head groups of the phospholipid molecules. The excimerization rate is very sensitive to lipid phase transitions and pretransitions of synthetic pure lipid bilayers. In bacterial lipids from cultures grown at 55 and 68 degrees C, thermal profiles of excimer to monomer intensity ratios (I'/I) show a broad transition which is displaced to higher temperatures in response to the increase of the growth temperature; these results correlate well with differential scanning calorimetry data and fluorescence polarization of diphenylhexatriene. Additionally, lipid bilayers of bacteria grown at 68 degrees C exhibit a decreased membrane fluidity, as monitored by both fluorescent probes.  相似文献   

17.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

18.
X-ray diffraction studies were made on lecithin/cholesterol multilayers with very high water content and containing the local anaesthetic procaine. Narrow-angle diffraction experiments show that the procaine molecules are located with the uncharged aromatic amine group approx. 10 Å from the centre of the bilayer. The polar tertiary amine group of these molecules is almost certainly located in the polar head-group region of the membrane. Wide-angle diffraction experiments show that the incorporation of procaine molecules into such lipid membranes produces an approx. 30% increase in the spread of acyl chain separation, although the average spacing between the chains is slightly reduced.  相似文献   

19.
The lipid phase of transverse tubule membrane was probed with a variety of fatty acid spin labels. The motion of the probe increased as the distance between the spin label and polar head group increased, in agreement with results reported in other membranes. The value of the order parameter at 37 degrees C for a fatty acid spin label containing the label attached to its fifth carbon atom was closer to values reported for bacterial membranes than to the lower values reported for other mammalian membranes. Order parameters for spin labels containing the label nearer to the center of the bilayer were closer to the values reported in other mammalian membranes than to values reported for bacterial membranes. These results indicate that the lipid segments in the vicinity of the polar head group, and less so those near the center of the bilayer, are motionally more restricted in transverse tubules than in other mammalian membranes. In particular, the lipid phase of the transverse tubule membrane is less fluid than that of the sarcoplasmic reticulum membrane. A possible role of the high cholesterol content of transverse tubules in generating the lower fluidity of its lipid phase is discussed.  相似文献   

20.
Three specimen preparation techniques for electron microscopy were used to investigate the incorporation of the ATPase polypeptide chains in the membranes of fragmented sarcoplasmic reticulum (SR) obtained from rabbit skeletal muscle. Observations were made of both normal vesicles and vesicles exposed to trypsin, which is known to cleave the ATPase protein and to alter the ultrastructure of the vesicles in predictable ways. Freeze-fracture replicas reveal the typical 90-A particles on the concave (PF) faces with a density of 5,730 +/- 520/mum2. On the other hand both negatively stained and deeply etched preparations display outer projections, which are absent on trypsin-incubated vesicles. The etched specimens afford for the first time top views of the vesicles in the absence of any stain. These views reveal outer projections on the PS surface with a density of 21,000 +/- 3,900/mum2, a value nearly approximating the density of the ATPase polypeptide chains (106,000 mol wt) calculated on the basis of protein and membrane area determinations. On the other hand, this value is three to four times higher than that found for the density of the 90-A particles on the concave fracture faces. Since both outer projections and 90-A particles are identified with the ATPase protein, it is suggested that the ATPase polypeptide chains are amphiphilic molecules, with polar ends protruding individually as outer projections on the surface of the vesicles, and hydrophobic ends appearing as 90-A particles on the concave fracture faces. The discrepancy between the densities of the outer projections and the 90-A particles may be attributed either to variable penetration of the polypeptide chains into the membrane bilayer, or to formation of oligomers containing three or four hydrophobic ends and appearing as single 90-A particles. Each ATPase chain forms a complex with 20-30 phospholipid molecules. The remaining phospholipids (approximately 70% of the total SR phospholipids) account for less than half the membrane volume. It is proposed that the outer leaflet of the SR membrane is prevalently composed of the ATPase lipoprotein complex, and the inner leaflet is mostly a phospholipid monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号