首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital muscular dystrophies involving the O-mannose pathway   总被引:1,自引:0,他引:1  
A number of forms of congenital muscular dystrophy (CMD) have been identified that involve defects in the glycosylation of dystroglycan with O-mannosyl-linked glycans. There are at least six genes that can affect this type of glycosylation, and defects in these genes give rise to disorders that have many aspects of muscle and brain pathology in common. Overexpression of one gene implicated in CMD, LARGE, was recently shown to increase dystroglycan glycosylation and restore its function in cells taken from CMD patients. Overexpression of Galgt2, a glycosyltransferase not implicated in CMD, also alters dystroglycan glycosylation and inhibits muscular dystrophy in a mouse model of Duchenne muscular dystrophy. These findings suggest that a common approach to therapy in muscular dystrophies may be to increase the glycosylation of dystroglycan with particular glycan structures.  相似文献   

2.
Molecular mechanisms of muscular dystrophies: old and new players   总被引:1,自引:0,他引:1  
The study of the muscle cell in the muscular dystrophies (MDs) has shown that mutant proteins result in perturbations of many cellular components. MDs have been associated with mutations in structural proteins, signalling molecules and enzymes as well as mutations that result in aberrant processing of mRNA or alterations in post-translational modifications of proteins. These findings have not only revealed important insights for cell biologists, but have also provided unexpected and exciting new approaches for therapy.  相似文献   

3.
We used expression profiling to define the pathophysiological cascades involved in the progression of two muscular dystrophies with known primary biochemical defects, dystrophin deficiency (Duchenne muscular dystrophy) and alpha-sarcoglycan deficiency (a dystrophin-associated protein). We employed a novel protocol for expression profiling in human tissues using mixed samples of multiple patients and iterative comparisons of duplicate datasets. We found evidence for both incomplete differentiation of patient muscle, and for dedifferentiation of myofibers to alternative lineages with advancing age. One developmentally regulated gene characterized in detail, alpha-cardiac actin, showed abnormal persistent expression after birth in 60% of Duchenne dystrophy myofibers. The majority of myofibers ( approximately 80%) remained strongly positive for this protein throughout the course of the disease. Other developmentally regulated genes that showed widespread overexpression in these muscular dystrophies included embryonic myosin heavy chain, versican, acetylcholine receptor alpha-1, secreted protein, acidic and rich in cysteine/osteonectin, and thrombospondin 4. We hypothesize that the abnormal Ca(2)+ influx in dystrophin- and alpha-sarcoglycan-deficient myofibers leads to altered developmental programming of developing and regenerating myofibers. The finding of upregulation of HLA-DR and factor XIIIa led to the novel identification of activated dendritic cell infiltration in dystrophic muscle; these cells mediate immune responses and likely induce microenvironmental changes in muscle. We also document a general metabolic crisis in dystrophic muscle, with large scale downregulation of nuclear-encoded mitochondrial gene expression. Finally, our expression profiling results show that primary genetic defects can be identified by a reduction in the corresponding RNA.  相似文献   

4.
5.
Serum myoglobin (Mb) levels and creatine kinase (CK) activity were investigated in patients with different types of progressive muscular dystrophy and controls. The Mb levels were determined by radioimmunoassay and found to be significantly elevated in all patients under resting conditions. There was no correlation between Mb levels and CK activity. Physical exercise was followed by an increase in Mb levels and CK activity in patients and a minor variation in controls. Isoelectric focusing, electroblotting and application of a specific Mb antibody (rabbit anti-human Mb) make it possible to recognize marked differences between the Mb bands of patients and controls. All patients with progressive muscular dystrophy had an additional fourth Mb band (isoelectric point pH 6.3) in contrast to controls with three Mb bands.  相似文献   

6.
7.
A mechanistic definition of the dystrophic process is proposed, and the effects of growth factors vs. down-regulation of growth are critically analyzed. A conceptual scheme is presented to illustrate the steps leading to pathology, and various compensatory systems which ameliorate the pathology are examined, particularly in regards to the mdx mouse which is resistant to the deficiency of dystrophin, the main protein product of the Duchenne and Becker muscular dystrophy (DMD/BMD) gene. These compensatory systems are analyzed in terms of the differential resistance of fiber types to pathogenesis. The generation of a stable population of maturationally arrested centronucleated fibers which express the mature adult myosin isoforms is proposed to be the main strategy of mdx muscle to minimize apoptosis. Physiological properties of these fibers, such as utrophin expression, and high mitochondrial and endoplasmic reticulum content, together with probable increased glycerophosphorylcholine concentrations and facile access to the vascular system, are hypothesized to be instrumental in their resistance to pathogenesis. It is proposed that the major element that determines the susceptibility of most human muscles to the dystrophic process is their inability to arrest the maturation of regenerated fibers at the centronucleated stage with a concomitant expression of the adult myosins.  相似文献   

8.
9.
10.
Muscular dystrophies are a group of heterogeneous genetic disorders characterized by progressive loss of skeletal muscle mass. Depending on the muscular dystrophy, the muscle weakness varies in degree of severity. The majority of myopathies are due to genetic events leading to a loss of function of key genes involved in muscle function. Although there is until now no curative treatment to stop the progression of most myopathies, a significant number of experimental gene- and cell-based strategies and approaches have been and are being tested in vitro and in animal models, aiming to restore gene function. Genome editing using programmable endonucleases is a powerful tool for modifying target genome sequences and has been extensively used over the last decade to correct in vitro genetic defects of many single-gene diseases. By inducing double-strand breaks (DSBs), the engineered endonucleases specifically target chosen sequences. These DSBs are spontaneously repaired either by homologous recombination in the presence of a sequence template, or by nonhomologous-end joining error prone repair. In this review, we highlight recent developments and challenges for genome-editing based strategies that hold great promise for muscular dystrophies and regenerative medicine.  相似文献   

11.
Muses S  Morgan JE  Wells DJ 《PloS one》2011,6(9):e24826
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2K(b)-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.  相似文献   

12.
13.
Introduction: Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity.

Areas covered: Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled.

Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing.  相似文献   


14.
Immunohistochemical reactivity for utrophin has been recorded in 45 biopsies from patients with various neuromuscular diseases. The upregulation of utrophin on the extrajunctional sarcolemma has been found in dystrophinopathies, other muscular dystrophies, congenital myopathies, inflammatory myopathies, neurogenic muscle disorders (diabetic neuropathy, amyotrophic lateral sclerosis and spinal muscular atrophies), minimal change myopathies as well as in some normal biopsies.  相似文献   

15.
16.
A dystrophin-containing glycoprotein complex (DGC) links the basal lamina surrounding each muscle fibre to the fibre's cytoskeleton, providing both structural support and a scaffold for signalling molecules. Mutations in genes encoding several DGC components disrupt the complex and lead to muscular dystrophy. Here we show that mice deficient in alpha-dystrobrevin, a cytoplasmic protein of the DGC, exhibit skeletal and cardiac myopathies. Analysis of double and triple mutants indicates that alpha-dystrobrevin acts largely through the DGC. Structural components of the DGC are retained in the absence of alpha-dystrobrevin, but a DGC-associated signalling protein, nitric oxide synthase, is displaced from the membrane and nitric-oxide-mediated signalling is impaired. These results indicate that both signalling and structural functions of the DGC are required for muscle stability, and implicate alpha-dystrobrevin in the former.  相似文献   

17.
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.  相似文献   

18.
Carrier diagnosis and prenatal diagnosis of Duchenne's muscular dystrophy (DMD) and Becker's muscular dystrophy (BMD) has become possible using some twenty RFLPs detected by more than a dozen Xp21 probes that are either intragenic or flanking the disease locus. Results from familial studies on 88 DMD and BM families stress important considerations concerning a priori and final risks, individuals necessary for the identification of the phase, and the different strategies that can be applied, regardless of whether the study concerns an on-going pregnancy or a carrier-status determination, and whether the patient is at high or low risk. Finally, multiple sources of difficulties in interpreting the results depend on a) the occurrence of new mutations that must be traced; b) the existence of meiotic recombination; c) the necessity, in some instances, of relying upon the sole identification of the paternal X. These considerations emphasize the characteristics and the important limitations of this type of methodology.  相似文献   

19.
Intracellular free calcium concentration [( Ca2+]i) of human peripheral blood lymphocytes was determined by fluorescence spectroscopic measurements with quin2 in patients with different types of muscular dystrophy and in controls. The [Ca2+]i level in lymphocytes showed a significant increase in adult type (facioscapulohumeral and limb-girdle) muscular dystrophies, while it showed a decrease in Duchenne dystrophy as compared to the values of age- and sex-matched controls. The data obtained suggest an alteration in the effectiveness of the calcium pump in lymphocytes and may represent a sign of generalized membrane damage in these hereditary muscle diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号